Skip to main content

Thyroid Hormone-Induced Apoptosis during Amphibian Metamorphosis

  • Chapter
Molecular Mechanisms of Programmed Cell Death

Abstract

Anuran metamorphosis involves thyroid hormone (TH)-induced, systematic transformations of individual organs. The vast majority of the larval tissues are removed during this process. Among them is the complete degeneration of the tail and gills and reduction of small intestine by about 90% (lengthwise). Various morphological and cellular studies have shown that the removal of larval organs/tissues is through programmed cell death or apoptosis. Recent cloning and characterization of TH-regulated genes revealed that a group of genes encoding matrix metalloproteinases (MMPs) are activated by TH during metamorphosis in various organs. The activation of MMPs, which are extracellular or membrane-associated enzymes capable of degrading extracellular matrix (ECM) proteins, are in agreement with the previously observed remodeling/degradation of the ECM during metamorphosis. In vivo and in vitro studies have provided evidence to support that ECM remodeling by MMPs plays an important role in regulating apoptosis and cell migration during tissue remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

TH:

thyroid hormone

TR:

TH Receptor

RXR:

retinoid X receptor or 9-cis-retinoic acid receptor

MMP:

matrix metalloproteinase, ECM, extracellular matrix

ECM:

extracellular matrix

ST1:

stromelysin-1

ST3:

stromelysin-3

Col3:

collagenase-3

Col4:

collagenase-4

GLA:

gelatinase-A

GLB:

gelatinase-B

References

  • Alexander, C. M., and Werb, Z. (1991). Extracellular matrix degradation. In Cell Biology of Extracellular Matrix, E. D. Hay, ed. ( New York, Plenum Press ), pp. 255–302.

    Chapter  Google Scholar 

  • Berry, D. L., Rose, C. S., Remo, B. F., and Brown, D. D. (1998a). The expression pattern of thyroid hormone response genes in remodeling tadpole tissues defines distinct growth and resorption gene expression programs., Dev Biol 203, 24–35.

    Article  PubMed  CAS  Google Scholar 

  • Berry, D. L., Schwartzman, R. A., and Brown, D. D. (1998b). The expression pattern of thyroid hormone response genes in the tadpole tail identifies multiple resorption programs., Develop Biol 203, 12–23.

    Article  PubMed  CAS  Google Scholar 

  • Birkedal-Hansen, H., Moore, W. G. I., Bodden, M. K., Windsor, L. T., Birkedal-Hansen, B., DeCarlo, A., and Engler, J. A. (1993). Matrix metalloproteinases: a review., Crit Rev in Oral Biol and Med 4, 197–250.

    CAS  Google Scholar 

  • Cryns, V., and Yuan, J. (1998). Proteases to die for [published erratum appears in Genes Dev 1999 Feb 1;13(3):371]., Genes Dev 12, 1551–70.

    Google Scholar 

  • Damjanovski, S., Amano, T., Li, Q., Pei, D., and Shi, Y.-B. (2001). Overexpression of Matrix Metalloproteinases Leads to Lethality in Transgenic Xenopus Laevis: Implications for Tissue-Dependent Functions of Matrix Metalloproteinases during Late Embryonic development., Dev Dynamics 221, 37–47.

    Article  CAS  Google Scholar 

  • Damjanovski, S., Ishizuya-Oka, A., and Shi, Y. B. (1999). Spatial and temporal regulation of collagenases-3, -4, and stromelysin-3 implicates distinct functions in apoptosis and tissue remodeling during frog metamorphosis., Cell Res 9, 91–105.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, M. H. I., and Dodd, J. M. (1976). The biology of metamorphosis. In Physiology of the amphibia, B. Lofts, ed. ( New York, Academic Press ), pp. 467–599.

    Chapter  Google Scholar 

  • Hay, E. D. (1991). Cell Biology of Extracellular Matrix, 2nd edn (New York, Plenum Press).

    Google Scholar 

  • Ishizuya-Oka, A., Li, Q., Amano, T., Damjanovski, S., Ueda, S., and Shi, Y-B. (2000). Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis., J Cell Biol 150, 1177–88.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka, A., and Shimozawa, A. (1987). Ultrastructural changes in the intestinal connective tissue of Xenopus laevis during metamorphosis., J Morphol 193, 13–22.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka, A., and Shimozawa, A. (1991). Induction of metamorphosis by thyroid hormone in anuran small intestine cultured organotypically in vitro., In Vitro Cell Dev Biol 27A, 853–7.

    Google Scholar 

  • Ishizuya-Oka, A., and Shimozawa, A. (1992). Connective tissue is involved in adult epithelial development of the small intestine during anuran metamorphosis in vitro., Roux’s Arch Dev Biol 201, 322–329.

    Article  Google Scholar 

  • Ishizuya-Oka, A., and Shimozawa, A. (1994). Inductive action of epithelium on differentiation of intestinal connective tissue of Xenopus laevis tadpoles during metamorphosis in vitro., Cell Tissue Res 277, 427–36.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka, A., and Ueda, S. (1996). Apoptosis and cell proliferation in the Xenopus small intestine during metamorphosis., Cell Tissue Res 286, 467–76.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka, A., Ueda, S., Damjanovski, S., Li, Q., Liang, V. C., and Shi, Y-B. (1997). Anteroposterior gradient of epithelial transformation during amphibian intestinal remodeling: immunohistochemical detection of intestinal fatty acid-binding protein., Dev Biol 192, 149–61.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka, A., Ueda, S., and Shi, Y-B. (1996). Transient expression of stromelysin-3 mRNA in the amphibian small intestine during metamorphosis., Cell Tissue Res 283, 325–9.

    Article  PubMed  CAS  Google Scholar 

  • Izutsu, Y.,Yoshizato, K., and Tochinai, S. (1996). Adult-type splenocytes of Xenopus induce apoptosis of histocompatible larval tail cells in vitro., Differentiation 60,277–86.

    Google Scholar 

  • Jung, J.-C., Leco, K. J., Edwards, D. R., and Fini, M. E. (2002). Matrix metalloproteinase mediate the dismantling of mesenchymal structures in the tadpole tail during thyroid hormone-induced tail resorption., dev dyn 223, 402–413.

    CAS  Google Scholar 

  • Kerr, J. F. R., Harmon, B., and Searle, J. (1974). An electron-microscope study of cell eletion in the anuran tadpole tail during spontaneous metamorphosis with special reference to apoptosis of striated muscle fibres., J Cell Sci 14, 571–585.

    PubMed  CAS  Google Scholar 

  • Kinoshita, T., Sasaki, F., and Watanabe, K. (1985). Autolysis and heterolysis of the epidermal cells in anuran tadpole tail regression., J of Morphology 185, 269–275.

    Article  Google Scholar 

  • Kroll, K. L., and Amaya, E. (1996). Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation., Development 122, 3173–83.

    PubMed  CAS  Google Scholar 

  • Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., and et al. (1995). The nuclear receptor superfamily: the second decade., Cell 83, 835–9.

    Article  PubMed  CAS  Google Scholar 

  • McCawley, L. J., and Matrisian, L. M. (2001). Matrix metalloproteinases: they’re not just for matrix anymore!, Current Opinion in Cell Biology 13, 534–540.

    Article  PubMed  CAS  Google Scholar 

  • Murata, E., and Merker, H. J. (1991). Morphologic changes of the basal lamina in the small intestine of Xenopus laevis during metamorphosis., Acta Anat 140, 60–9.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, G., and Gavrilovic, J. (1999). Proteolysis and cell migration: creating a path?, Current Opinion in Cell Biology 11, 614–621.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, G., Segain, J.-P., O’Shea, M., Cockett, M., Ioannou, C., Lefebvre, O., Chambon, P., and Basset, P. (1993). The 28-kDa N-terminal domain of mouse stromelysin-3-has the general properties of a weak metalloproteinase., J Biol Chem 268, 15435–15441.

    PubMed  CAS  Google Scholar 

  • Nagase, H. (1998). Cell surface activation of progelatinase A (proMMP-2) and cell migration., Cell Res 8, 179–86.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop, P. D., and Faber, J. (1956). Normal table of Xenopus laevis., I st. edn (Amsterdam, North Holland Publishing).

    Google Scholar 

  • Niki, K., Namiki, H., Kikuyama, S., and Yoshizato, K. (1982). Epidermal tissue requirement for tadpole tail regression induced by thyroid hormone., Dev Biol 94, 116–20.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa, A., and Hayashi, H. (1995). Spatial, temporal and hormonal regulation of programmed muscle cell death during metamorphosis of the frog Xenopus laevis., Differentiation 59, 207–14.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa, A., and Yoshizato, K. (1986). Hormonal regulation of growth and life span of bullfrog tadpole tail epidermal cells cultured in vitro., J Exp Zool 237, 221–30.

    Article  PubMed  CAS  Google Scholar 

  • Oofusa, K., Yomori, S., and Yoshizato, K. (1994). Regionally and hormonally regulated expression of genes of collagen and collagenase in the anuran larval skin., Int J Dev Biol 38, 345–50.

    PubMed  CAS  Google Scholar 

  • Patterton, D., Hayes, W. P., and Shi, Y. B. (1995). Transcriptional activation of the matrix metalloproteinase gene stromelysin-3 coincides with thyroid hormone-induced cell death during frog metamorphosis., Dev Biol 167, 252–62.

    Article  PubMed  CAS  Google Scholar 

  • Pei, D. (1999). Leukolysin/MMP25/MT6-MMP: a novel matrix metalloproteinase specifically expressed in the leukocyte lineage., Cell Res 9, 291–303.

    Article  PubMed  CAS  Google Scholar 

  • Pei, D., Majmudar, G., and Weiss, S. J. (1994). Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3., J Biol Chem 269, 25849–55.

    PubMed  CAS  Google Scholar 

  • Rao, L., and White, E. (1997). Bcl-2 and the ICE family of apoptotic regulators: making a connection., Curr Opin Genet Dev 7, 52–8.

    Article  PubMed  CAS  Google Scholar 

  • Sang, Q. X. (1998). Complex role of matrix metalloproteinases in angiogenesis., Cell Res 8, 171–7.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y-B. (1999). Amphibian Metamorphosis: From morphology to molecular biology. (New York, John Wiley & Sons, Inc.).

    Google Scholar 

  • Shi, Y-B., and Brown, D. D. (1993). The earliest changes in gene expression in tadpole intestine induced by thyroid hormone., J Biol Chem 268, 20312–20317.

    PubMed  CAS  Google Scholar 

  • Shi, Y.-B., and Ishizuya-Oka, A. (1996). Biphasic intestinal development in amphibians: Embryogensis and remodeling during metamorphosis., Current Topics in Develop Biol 32, 205–235.

    Article  CAS  Google Scholar 

  • Shi, Y-B., and Ishizuya-Oka, A. (2001). Thyroid hormone regulation of apoptotic tissue remodeling: Implications from molecular analysis of amphibian metamorphosis., Progress in Nucleic Acid Research and Molecular Biology 65, 53–100.

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W. G. (1996). Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix., American Journal of Pathology 148, 1345–1350.

    PubMed  CAS  Google Scholar 

  • Stolow, M. A., Bauzon, D. D., Li, J., Sedgwick, T., Liang, V. C., Sang, Q. A., and Shi, Y. B. (1996). Identification and characterization of a novel collagenase in Xenopus laevis: possible roles during frog development., Mol Biol Cell 7, 1471–83.

    PubMed  CAS  Google Scholar 

  • Su, Y., Shi, Y., and Shi, Y.-B. (1997a). Cyclosporin A But not FK506 Inhibits Thyroid Hormone-Induced Apoptosis in Xenopus Tadpole Intestinal Epithelium., FASEB J 11, 559–565.

    PubMed  CAS  Google Scholar 

  • Su, Y., Shi, Y., Stolow, M., and Shi, Y.-B. (1997b). Thyroid hormone induces apoptosis in primary cell cultures of tadpole intestine: cell type specificity and effects of extracellular matrix., J Cell Biol 139, 1533–1543.

    Article  PubMed  CAS  Google Scholar 

  • Timpl, R., and Brown, J. C. (1996). Supramolecular assembly of basement membranes., BioEssays 18, 123–132.

    CAS  Google Scholar 

  • Tsai, M. J., and O’Malley, B. W. (1994). Molecular mechanisms of action of steroid/thyroid receptor superfamily members., Ann Rev Biochem 63, 451–486.

    Article  PubMed  CAS  Google Scholar 

  • Uria, J. A., and Werb, Z. (1998). Matrix metalloproteinases and their expression in mammary gland., Cell Res 8, 187–94.

    Article  PubMed  CAS  Google Scholar 

  • Vu, T. H., and Werb, Z. (2000). Matrix metalloproteinases: effectors of development and normal physiology., Genes & Dev 14, 2123–33.

    Article  CAS  Google Scholar 

  • Wang, Z., and Brown, D. D. (1993). Thyroid hormone-induced gene expression program for amphibian tail resorption., J Biol Chem 268, 16270–16278.

    PubMed  CAS  Google Scholar 

  • Woo, M., Hakem, R., and Mak, T. W. (2000). Executionary pathway for apoptosis: lessons from mutant mice., Cell Research 10, 267–278.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y. L., and M., L. X. (2000). The IAP family: endogenous caspase inhibitors with multiple biological activities., Cell Research 10, 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Yaoita, Y., and Nakajima, K. (1997). Inductoin of Apoptosis and CPP32 Expression by Thyroid Hormone in a Myoblastic Cell Line Dervided from Tadpole Tail., J Biol Chem 272, 5122–5127.

    Article  PubMed  CAS  Google Scholar 

  • Yen, P. M. (2001). Physiological and molecular basis of thyroid hormone action., Physiol Rev 81, 1097–142.

    PubMed  CAS  Google Scholar 

  • Zhang, J. H., and Xu, M. (2000). DNA fragmentation in apoptosis., Cell Research 10, 205–211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Bo Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amano, T., Fu, L., Ishizuya-Oka, A., Shi, YB. (2003). Thyroid Hormone-Induced Apoptosis during Amphibian Metamorphosis. In: Shi, Y., Cidlowski, J.A., Scott, D., Wu, JR., Shi, YB. (eds) Molecular Mechanisms of Programmed Cell Death. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5890-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5890-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3404-8

  • Online ISBN: 978-1-4757-5890-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics