Skip to main content

Oxidative Stress, Caveolae and Caveolin-1

  • Chapter
Membrane Dynamics and Domains

Part of the book series: Subcellular Biochemistry ((SCBI,volume 37))

Abstract

Oxidative stress underlies a range of pathophysiological conditions. Reactive oxygen species are also generated intracellularly to serve as second messengers and some are linked to caveolae/raft signalling systems. The effect of oxidative stress on caveolin-1 expression, post-translational modifications, membrane trafficking and function are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. G., Kamen, B. A., Rothberg, K. G., and Lacey, S. W. (1992). Potocytosis: Sequestration and transport of small molecules by caveolae. Science 255, 410–411.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, T., Nomura, R., and Fujimoto, T. (1999). Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp. Cell Res. 253, 629–636.

    Article  PubMed  CAS  Google Scholar 

  • Benlimame, N., Le, P. U., and Nabi, I. R. (1998). Localization of autocrine motility factor receptor to caveolae and clathrin-independent internalization of its ligand to smooth endoplasmic reticulum. Mol. Biol. Cell 9, 1773–1786.

    PubMed  CAS  Google Scholar 

  • Blair, A., Shaul, P. W, Yuhanna, I. S., Conrad, P. A., and Smart, E. J. (1999). Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J. Biol. Chem. 274, 32512–32519.

    Article  PubMed  CAS  Google Scholar 

  • Cominacini, L., Pasini, A. E, Garbin, U., Davoli, A., Tosetti, M. L., Campagnola, M., Rigoni, A., Pastorino, A. M., Lo Cascio, V., and Sawamura, T. (2000). Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-KB through an increased production of intracellular reactive oxygen species. J. Biol. Chem. 275, 12633–12638.

    Article  PubMed  CAS  Google Scholar 

  • Das, K., Lewis, R. Y., Scherer, P. E., and Lisanti, M. P. (1999). The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo. J. Biol. Chem. 274, 18721–18728.

    Article  PubMed  CAS  Google Scholar 

  • de Marco, M. C., Kremer, L., Albar, J. P., Martinez-Menarguez, J. A., Ballesta, J., Garcia-Lopez, M. A., Marazuela, M., Puertollano, R., and Alonso, M. A. (2001). Bene, a novel raft-associated protein of the mal proteolipid family, interacts with caveolin-1 in human endothelial-like ECV304 cells. J. Biol. Chem. 276, 23009–23017.

    Article  PubMed  Google Scholar 

  • Dietzen, D. J., Hastings, W. R., and Lublin, D. M. (1995). Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J. Biol. Chem. 270, 6838–6842.

    Article  PubMed  CAS  Google Scholar 

  • Doukyu, N., and Aono, R. (1999). Two moles of 02 consumption and one mole of H2O2 formation during cholesterol peroxidation with cholesterol oxidase from Pseudomonas sp. strain ST-200. Biochem. J. 341, 621–627.

    Article  PubMed  CAS  Google Scholar 

  • Dupree, E, Parton, R. G., Raposo, G., Kurzchalia, T. V., and Simons, K. (1993). Caveolae and sorting in the trans-golgi network of epithelial cells. EMBO J. 12, 1597–1605.

    PubMed  CAS  Google Scholar 

  • Fielding, C. J., Bist, A., and Fielding, P. E. (1997). Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc. Natl. Acad. Sci. U.S.A. 94, 3753–3758.

    Article  PubMed  CAS  Google Scholar 

  • Finkel, T. (2001). Reactive oxygen species and signal transduction. IUBMB Life 52, 3–6.

    Article  PubMed  CAS  Google Scholar 

  • Fra, A. M., Williamson, E., Simons, K., and Parton, R. G. (1995). De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl. Acad. Sci. U.S.A. 92,8655–8659.

    Article  PubMed  CAS  Google Scholar 

  • Galbiati, F., Volonte, D., Minetti, C., Chu, J. B., and Lisanti, M. P. (1999). Phenotypic behavior of caveolin-3 mutations that cause autosomal dominant limb girdle muscular dystrophy (LGMD-1C). Retention of LGMD-1C caveolin-3 mutants within the Golgi complex. J. Biol. Chem. 274, 25632–25641.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cardena, G., Fan, R., Shah, V, Sorrentino, R., Cirino, G., Papapetropoulos, A., and Sessa, W. C. (1998). Dynamic activation of endothelial nitric oxide synthase by hsp90. Nature 392, 821–824.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cardena, G., Martasek, P, Masters, B. S., Skidd, P. M., Couet, J., Li, S., Lisanti, M. P., and Sessa, W. C. (1997). Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J. Biol. Chem. 272, 25437–25440.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cardena, G., Oh, E, Liu, J., Schnitzer, J. E., and Sessa, W. C. (1996). Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: Implications for nitric oxide signaling. Proc. Natl. Acad. Sci. U.S.A. 93, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  • Glenney, J. R., Jr. (1989). Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J. Biol. Chem. 264, 20163–20166.

    PubMed  CAS  Google Scholar 

  • Glenney, J. R., Jr., and Zokas, L. (1989). Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J. Cell Biol. 108, 2401–2408.

    Article  PubMed  CAS  Google Scholar 

  • Gniadecki, R., Christoffersen, N., and Wulf, H. C. (2002). Cholesterol-rich plasma membrane domains (lipid rafts) in keratinocytes: Importance in the baseline and UVA-induced generation of reactive oxygen species. J. Invest. Dermatol. 118, 582–588.

    Article  PubMed  CAS  Google Scholar 

  • Goligorsky, M. S., Li, H., Brodsky, S., and Chen, J. (2002). Relationships between caveolae and eNOS: Everything in proximity and the proximity of everything. Am. J. Physiol. Renal Physiol. 283, F1–10.

    PubMed  CAS  Google Scholar 

  • Govers, R., and Rabelink, T. J. (2001). Cellular regulation of endothelial nitric oxide synthase. Am. J. Physiol. Renal Physiol. 280, F193–206.

    PubMed  CAS  Google Scholar 

  • Gustaysson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K. H., Magnusson, K. E., and Stralfors, P. (1999). Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J. 13, 1961–1971.

    Google Scholar 

  • Hailstones, D., Sleer, L. S., Parton, R. G., and Stanley, K. K. (1998). Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid Res. 39, 369–379.

    PubMed  CAS  Google Scholar 

  • Henley, J. R., Krueger, E. W, Oswald, B. J., and McNiven, M. A. (1998). Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99.

    Article  PubMed  CAS  Google Scholar 

  • Kang, Y. S., Ko, Y. G., and Seo, J. S. (2000). Caveolin internalization by heat shock or hyper-osmotic shock. Exp. Cell Res. 255, 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. N., Dam, P., and Bertics, P. J. (2002). Caveolin-1 phosphorylation in human squamous and epidermoid carcinoma cells: Dependence on erbB1 expression and Src activation. Exp. Cell Res. 280, 134–147.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. N., Wiepz, G. J., Guadarrama, A. G., and Bertics, P. J. (2000). Epidermal growth factor-stimulated tyrosine phosphorylation of caveolin-1. Enhanced caveolin-1 tyrosine phosphorylation following aberrant epidermal growth factor receptor status. J. Biol. Chem. 275, 7481–7491.

    Article  PubMed  CAS  Google Scholar 

  • Ko, Y. G., Liu, P., Pathak, R. K., Craig, L. C., and Anderson, R. G. (1998). Early effects of PP60°S“ kinase activation on caveolae. J. Cell Biochem. 71, 524–535.

    Article  PubMed  CAS  Google Scholar 

  • Kojda, G., and Harrison, D. (1999). Interactions between NO and reactive oxygen species: Pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc. Res. 43, 562–571.

    Article  PubMed  CAS  Google Scholar 

  • Le, P. U.,Guay, G., Altschuler, Y. and Nabi, I. R. (2002). Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J. Biol. Chem. 277, 3371–3379.

    CAS  Google Scholar 

  • Lee, H., Park, D. S., Wang, X. B., Scherer, P. E., Schwartz, P. E., and Lisanti, M. P. (2002). Src-induced phosphorylation of caveolin-2 on tyrosine 19. Phospho-caveolin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. J. Biol. Chem. 277, 34556–34567.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H., Volonte, D., Galbiati, E, Iyengar, P, Lublin, D. M., Bregman, D. B., Wilson, M. T., Campos-Gonzalez, R., Bouzahzah, B., Pestell, R. G., et al. (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: Identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol. Endocrinol. 14, 1750–1775.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H., Woodman, S E, Engelman, J. A., Volonte, D., Galbiati, F., Kaufman, H. L., Lublin, D. M., and Lisanti, M. P. (2001). Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase. Targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (Tyr-14). J. Biol. Chem. 276, 35150–35158.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Brodsky, S., Basco, M., Romanov, V, De Angelis, D. A., and Goligorsky, M. S. (2001). Nitric oxide attenuates signal transduction: Possible role in dissociating caveolin-1 scaffold. Circ. Res. 88, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Couet, J., and Lisanti, M. P. (1996a). Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem. 271, 29182–29190.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J. E., Hansen, S. H., Nishimoto, I., and Lisanti, M. P. (1995). Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J. Biol. Chem. 270, 15693–15701.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Seitz, R., and Lisanti, M. P. (1996b). Phosphorylation of caveolin by Src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J. Biol. Chem. 271, 3863–3868.

    Article  PubMed  CAS  Google Scholar 

  • Lisanti, M. P., Scherer, P. E., Vidugiriene, J., Tang, Z., Hermanowski-Vosatka, A., Tu, Y. H., Cook, R. F., and Sargiacomo, M. (1994). Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: Implications for human disease. J. Cell Biol. 126, 111–126.

    Article  PubMed  CAS  Google Scholar 

  • Liu, P., Wang, P., Michaely, P., Zhu, M., and Anderson, R. G. (2000). Presence of oxidized cholesterol in caveolae uncouples active platelet-derived growth factor receptors from tyrosine kinase substrates. J. Biol. Chem. 275, 31648–31654.

    Article  PubMed  CAS  Google Scholar 

  • Lizard, G., Gueldry, S., Sordet, O., Monier, S., Athias, A., Miguet, C., Bessede, G., Lemaire, S., Solary, E., and Gambert, P. (1998). Glutathione is implied in the control of 7-ketocholesterolinduced apoptosis, which is associated with radical oxygen species production. FASEB J. 12, 1651–1663.

    PubMed  CAS  Google Scholar 

  • Mastick, C. C., Brady, M. J., and Saltiel, A. R. (1995). Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol. 129, 1523–1531.

    Article  PubMed  CAS  Google Scholar 

  • Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997). Reciprocal regulation of endothelial nitric-oxide synthase by Cat+-calmodulin and caveolin. J. Biol. Chem. 272, 15583–15586.

    Article  PubMed  CAS  Google Scholar 

  • Michel, T. (1999). Targeting and translocation of endothelial nitric oxide synthase. Braz. J. Med. Biol. Res. 32, 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  • Mineo, C., and Anderson, R. G. (2001). Potocytosis. Histochem. Cell Biol. 116, 109–118.

    Google Scholar 

  • Murata, M., Peranen, J., Schreiner, R., Wieland, E, Kurzchalia, T. V., and Simons, K.(1995) VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. U.S.A. 92,10339–10343.

    Article  PubMed  CAS  Google Scholar 

  • Myers, S. J., and Stanley, K. K. (1999). Src family kinase activation in glycosphingolipidrich membrane domains of endothelial cells treated with oxidised low density lipoprotein. Atherosclerosis 143, 389–397.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, R., and Fujimoto, T. (1999). Tyrosine-phosphorylated caveolin-1: Immunolocalization and molecular characterization. Mol. Biol. Cell 10, 975–986.

    PubMed  CAS  Google Scholar 

  • Norkin, L. C. (2001). Caveolae in the uptake and targeting of infectious agents and secreted toxins. Adv. Drug Deliv. Rev. 49, 301–315.

    CAS  Google Scholar 

  • Okamoto, Y., Ninomiya, H., Miwa, S., and Masaki, T. (2000). Cholesterol oxidation switches the internalization pathway of endothelin receptor type A from caveolae to clathrincoated pits in chinese hamster ovary cells. J. Biol. Chem. 275, 6439–6446.

    Article  PubMed  CAS  Google Scholar 

  • Parat, M. O., and Fox, P. L. (2001). Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible. J. Biol. Chem. 276, 15776–15782.

    Article  PubMed  CAS  Google Scholar 

  • Parat, M. O., Stachowicz, R. Z., and Fox, P. L. (2002). Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells. Biochem. J. 361, 681–688.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, T. E., Poppa, V, Ueba, H., Wu, A., Yan, C., and Berk, B. C. (1999). Opposing effects of reactive oxygen species and cholesterol on endothelial nitric oxide synthase and endothelial cell caveolae. Circ. Res. 85, 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar, P., Thatte, H. S., Goetz, R. M., Cho, M. R., Golan, D. E., and Michel, T. (1998). Receptor-regulated translocation of endothelial nitric-oxide synthase. J. Biol. Chem. 273, 27383–27388.

    Article  PubMed  CAS  Google Scholar 

  • Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R., and Anderson, R. G. (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Samsonov, A. V, Mihalyov, I., and Cohen, F. S. (2001). Characterization of cholesterol-sphin-gomyelin domains and their dynamics in bilayer membranes. Biophys. J. 81,1486–1500.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, A. R., and Mastick, C. C. (2003). c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell. Signal 15, 289–298.

    Article  PubMed  CAS  Google Scholar 

  • Sargiacomo, M., Scherer, P. E., Tang, Z., Kubler, E., Song, K. S., Sanders, M. C., and Lisanti, M. P. (1995). Oligomeric structure of caveolin: Implications for caveolae membrane organization. Proc. Natl. Acad. Sci. U.S.A. 92, 9407–9411.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, P. E., Lewis, R. Y., Volonte, D., Engelman, J. A., Galbiati, F., Couet, J., Kohtz, D. S., van Donselaar, E., Peters, P., and Lisanti, M. P. (1997). Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable heterooligomeric complex in vivo. J. Biol. Chem. 272, 29337–29346.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, P. E., Tang, Z., Chun, M., Sargiacomo, M., Lodish, H. F., and Lisanti, M. P. (1995). Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J. Biol. Chem. 270, 16395–16401.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, A., Aryan, E, and Lisanti, M. P. (2001). Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J. Biol. Chem. 276, 4398–4408.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, A., Pestell, R. G., and Lisanti, M. P. (2000). Caveolins in cholesterol trafficking and signal transduction: Implications for human diseases. Front. Biosci. 5, D929–937.

    Article  Google Scholar 

  • Simionescu, M., Simionescu, N., and Palade, G. E. (1982). Biochemically differentiated microdomains of the cell surface of capillary endothelium. Ann. N.Y. Acad. Sci. 401, 9–24.

    Article  PubMed  CAS  Google Scholar 

  • Smart, E. J., and Anderson, R. G. (2002). Alterations in membrane cholesterol that affect structure and function of caveolae. Methods Enzymol. 353, 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Smart, E. J., Graf, G. A., McNiven, M. A., Sessa, W. C., Engelman, J. A., Scherer, P. E., Okamoto, T., and Lisanti, M. P. (1999). Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19, 7289–7304.

    PubMed  CAS  Google Scholar 

  • Smart, E. J., Ying Ys, Donzell, W. C., and Anderson, R. G. (1996). A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 271, 29427–29435.

    Article  PubMed  CAS  Google Scholar 

  • Smart, E. J., Ying, Y. S., Conrad, P. A., and Anderson, R. G. (1994). Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127, 1185–1197.

    Article  PubMed  CAS  Google Scholar 

  • Song, K. S., Tang, Z., Li, S., and Lisanti, M. P. (1997). Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolincaveolin interactions. J. Biol. Chem. 272, 4398–4403.

    Article  PubMed  CAS  Google Scholar 

  • Tang, Z., Scherer, P. E., Okamoto, T., Song, K., Chu, C., Kohtz, D. S., Nishimoto, I., Lodish, H. E, and Lisanti, M. P. (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271, 2255–2261.

    Article  PubMed  CAS  Google Scholar 

  • Thannickal, V J., and Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1005–1028.

    PubMed  CAS  Google Scholar 

  • Thomsen, P., Roepstorff, K., Stahlhut, M., and van Deurs, B. (2002). Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 13, 238–250.

    Article  PubMed  CAS  Google Scholar 

  • Uittenbogaard, A., Shaul, P. W, Yuhanna, I. S., Blair, A., and Smart, E. J. (2000). High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J. Biol. Chem. 275, 11278–11283.

    Article  PubMed  CAS  Google Scholar 

  • Uittenbogaard, A., and Smart, E. J. (2000). Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J. Biol. Chem. 275, 25595–25599.

    Article  PubMed  CAS  Google Scholar 

  • Uittenbogaard, A., Ying, Y, and Smart, E. J. (1998). Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J. Biol. Chem. 273, 6525–6532.

    Article  PubMed  CAS  Google Scholar 

  • Vepa, S., Scribner, W. M., and Natarajan, V (1997). Activation of protein phosphorylation by oxidants in vascular endothelial cells: Identification of tyrosine phosphorylation of caveolin. Free Radic. Biol. Med. 22, 25–35.

    CAS  Google Scholar 

  • Volonte, D., Galbiati, E, Pestell, R. G., and Lisanti, M. P. (2001). Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr14) via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J. Biol. Chem. 276, 8094–8103.

    Article  PubMed  CAS  Google Scholar 

  • Volonte, D., Zhang, K., Lisanti, M. P, and Galbiati, F. (2002). Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol. Biol. Cell 13, 2502–2517.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. Q., Sun, P., and Palier, A. S. (2002). Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. J. Biol. Chem. 277, 47028–47034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parat, MO., Fox, P.L. (2004). Oxidative Stress, Caveolae and Caveolin-1. In: Quinn, P.J. (eds) Membrane Dynamics and Domains. Subcellular Biochemistry, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5806-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5806-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3447-5

  • Online ISBN: 978-1-4757-5806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics