Skip to main content

Membrane Receptor Mapping: The Membrane Topography of FcεRI Signaling

  • Chapter
Membrane Dynamics and Domains

Abstract

Ligand binding to membrane receptors initiates cascades of biochemical events leading to physiological responses. Hundreds of proteins and lipids are implicated in signaling networks and programs in genomics and proteomics are continuously adding new components to the signaling “parts lists”. Here, we generate high resolution maps of signaling networks using cytoplasmic face-up membrane sheets that can be labeled with inununogold probes (3–10 nm) and imaged in the transmission electron microscope. Our model system is the mast cell and we focus on mapping the topography of the high affinity IgE receptor, FcεRI, its associated tyrosine kinases, Lyn and Syk, and the signaling proteins that propagate signals from these kinases. Crosslinked receptors and their signaling partners segregate during signaling to multiple, dynamic membrane domains, including a transient FcεRI-Lyn domain and at least two other distinct domains, one characterized by the presence of receptor, Syk and multiple signaling proteins, but not Lyn (primary signaling domains), and one characterized by the presence of LAT and PLCγl but not receptor (secondary signaling domains). PI 3-kinase associates with both primary and secondary signaling domains and may help to recruit specific signaling proteins through the local remodeling of inositol phospholipids. The lipid raft markers, GM1 and Thy-1, fail to localize in native membrane sheets either with each other or with signaling domains. We introduce new probes to localize multiple signaling molecules on the same membrane sheet and new computational tools to capture and analyze their topographical relationships. In the future, we expect that high resolution maps of signaling networks will be integrated with chemical kinetic analyses, with cell fractionation data and with a range of real-time fluorescence measurements, into mathematical models with power to predict mechanisms that regulate the efficiency, specificity, amplitude and duration of signaling pathways.

Our colleague, Carla Wofsy, died on August 4, 2003, after a long illness. This chapter is dedicated to her memory as a pioneering mathematical biologist and as a human of enormous grace, integrity and compassion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair, J.H. and Suvaci, E. 2000. Morphological control of particles. Current Opinion in Colloid and Interface. Science 5: 160–167.

    CAS  Google Scholar 

  • Anderson, R.G.W. and Jacobson, K. 2002. A role for lipid shells in targeting proteins to caveolae, rafts and other lipid domains. Science 296: 1821–1825.

    Article  PubMed  CAS  Google Scholar 

  • Barker, S.A., Caldwell, K.K., Pfeiffer, J.R., Wilson, B.S. 1998. Wortmannin-sensitive phosphorylation, translocation and activation of PLCγi, but not PLCγ2, in antigen-stimulated RBL-2H3 mast cells. Mol. Biol. Cell 9: 483–496.

    Google Scholar 

  • Barker, S.A., Lujan, D., Wilson, B.S. 1999. Multiple roles for PI 3-kinase in the regulation of PLCy activity and Cat+ mobilization in antigen-stimulated mast cells. J. Leukocyte Biol. 65: 321–329.

    PubMed  CAS  Google Scholar 

  • Berlin, R.D., Oliver, J.M., Ukena, T.E., Yin, H.H. 1974. Control of cell surface topography. Nature 247: 45–46.

    Article  PubMed  CAS  Google Scholar 

  • Blank, U., Ra, C., Miller, L., White, K., Metzger H., and Kinet, J-P. 1989. Complete structure and expression in transfected cells of high-affinity IgE receptor. Nature 337: 187–189.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.A., London, E. 2000. Structure and function of sphingolipid and cholesterol-rich membrane rafts. J. Biol. Chem. 275: 17221–17224.

    Google Scholar 

  • Bunge, S.D., Krueger, K.M., Boyle, T.J., Rodriguez, M.A., Headley T.J. and Colvin V.L. 2003a. Synthesis of coinage-metal nanoparticles from mesityl precursors. J. Materials Chem. in press.

    Google Scholar 

  • Bunge, S.D., Krueger, K.M., Boyle, T.J, Rodriguez, M.A., Headley, T.J. and Colvin, V.L.b. Growth and morphology of cadmium chalcogenides: the synthesis of nanorods, tetrapods and spheres from CdO and Cd(O2CCH3)2. J. Materials Chem. 13: 1705–1709.

    Google Scholar 

  • Cressie, N.A.C. 1993. Statistics for Spatial Data, New York: Wiley.

    Google Scholar 

  • Edidin, M., 1997. Lipid microdomains in cell-surface membranes. Current Opin. Struct. Biol. 7: 528–532.

    Article  CAS  Google Scholar 

  • Edidin, M. 2001. Shrinking patches and slippery rafts: scales of domains in the plasma membrane. TRENDS in Cell Biology 11: 492–496.

    Article  PubMed  CAS  Google Scholar 

  • Eiseman, E., Bolen, J. 1992. Engagement of the high affinity IgE receptor activates src protein-related tyrosine kinases. Nature 355: 78–80.

    Article  PubMed  CAS  Google Scholar 

  • Faeder, J.R., Hlavacek, W.S., Reischl, I., Blinov, M.L., Metzger, H., Redondo, A., Wofsy, C. and Goldstein, B. 2003. Investigation of early events in FIERI-mediated signaling using a detailed mathematical model J. Immunol. 170: 3769–3781.

    PubMed  CAS  Google Scholar 

  • Fan, IL, Boyle, T.J., Simon, T., Molloy, K. and Brinker, C.J. 2003. Surfactant-assisted self-assembly of ordered gold nanocrystals/silica nanostructures and their electrical properties. Submitted for publication.

    Google Scholar 

  • Field, K.A., Holowka, D. and Baird, B. 1995. FcERI-mediated recruitment of p53/561 to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl. Acad. Sci. USA 92: 9201–9205.

    Article  PubMed  CAS  Google Scholar 

  • Field, K.A., Holowka, D. and Baird, B. 1997. Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J. Biol. Chem. 272: 4276–4280.

    Article  PubMed  CAS  Google Scholar 

  • Field, K.A., Holowka, D. and Baird, B. 1999. Structural aspects of the association of FceRI with detergent-resistant membranes. J. Biol. Chem. 274: 1753–1758.

    Article  PubMed  CAS  Google Scholar 

  • Freemantle, M. 2001. Nanoparticle shape control. Chemical and Engineering News 79: 10.

    Google Scholar 

  • Fridriksson, E.K., Shipkova, P.A., Sheets, E.D., Holowka, D., Baird, B. and McLafferty, F.W. 1999. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38: 8056–8063.

    Article  PubMed  CAS  Google Scholar 

  • Friedrichson, T. and Kurzchalia, T. 1998. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394: 802–805.

    Article  PubMed  CAS  Google Scholar 

  • Fu, X.Y., Wang, Y., Wu, N.Z., Gui, L.L. and Tang, Y.Q. 2002. Shape-control of platinum nanoparticles stabilized by oxalate. Acta Chimica Sinica 60: 1324–1330.

    CAS  Google Scholar 

  • Ge, M., Field, K.A., Aneja, R., Holowka, D., Baird, B. and Freed, J.H. 1999. Electron spin resonance characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells. Biophysical Journal 77: 925–933.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, B. and Wofsy, C. 1994. Aggregation of cell surface receptors. Lectures on Mathematics in the Life Sciences 24: Cell Biology. Ed. B. Goldstein and C. Wofsy. Providence RI: American Mathematical Society, 109–135.

    Google Scholar 

  • Haase, P. 1995. Spatial pattern analysis in ecology based on Ripley’s K-function: Introduction and methods of edge correction. Journal of Vegetation Science 6: 575–582.

    Article  Google Scholar 

  • Hurley, J.H. and Meyer, T. 2001. Subcellular targeting by membrane lipids. Current Opinion in Cell Biology 13: 146–152.

    Article  PubMed  CAS  Google Scholar 

  • Hutchcroft, J.E., Geahlen, R.L., Deanin, G.G. and Oliver, J.M. 1992. FcERI-mediated tyrosine phosphorylation and activation of the 72 kDa protein-tyrosine kinases, PTK72, in RBL-2H3 rat tumor mast cells. Proc. Natl. Acad. Sci. 89: 9107–9111.

    Google Scholar 

  • Iino, R. and Kusumi, A. 2001. Single-fluorophore dynamic imaging in living cells. J. Fluorescence 11: 187–195.

    Article  CAS  Google Scholar 

  • Ilangumaran, S., Arni, S., van Echten-Deckert, G., Borisch, B. and Hoesli, D.C. 1999. Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol. Biol. Cell. 10: 891–905.

    Google Scholar 

  • Jacobson, K., and Dietrich, C. 1999. Looking at lipid rafts? Trends Cell Biol. 9: 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Jain, A.J. and Dubes, R.C. 1988. Algorithms for Clustering. Prentice Hall, Englewood Cliffs, New Jersey (1988).

    Google Scholar 

  • Jain, A.K., Murty, M.N. and Flynn, P.J. 1999. Data clustering: a review. ACM Computing Surveys 31: 264–323.

    Article  Google Scholar 

  • Jin, R.C., Cao, Y.W., Mirkin, C.A., Kelly, K.L., Schatz, G.C. and Zheng, J.G. 2001. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294: 1901–1903.

    Article  PubMed  CAS  Google Scholar 

  • Kenworthy, A.K., Petranova, N., Edidin, M. 2000. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11: 1645–1655.

    Google Scholar 

  • Kotula, P.G., Keenan, M.R. and Michael, J.R. 2003. Automated analysis of SEM X-ray spectral images. A powerful new microanalysis tool. Microsc. Microanal. 9: 1–17.

    Google Scholar 

  • Lara M., Ortega, E., Pecht, I., Pfeiffer, J.R., Martinez, A.M., Lee, R.J., Surviladze, Z., Wilson, B.S. and Oliver, J.M. 2001. Overcoming the signaling defect of Lyn-sequestering, signal-curtailing FcERI dimers. J. Immunol. 167: 4329–4337.

    PubMed  CAS  Google Scholar 

  • March, J. 1977. Advanced Organic Chemistry: Reactions, Mechanisms and Structure (2nd ed) McGraw-Hill Book Co (New York) pp 748–749.

    Google Scholar 

  • Mayor, S. and Maxfield, F.R. 1995. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent extraction. Mol. Biol. Cell 6: 929–944.

    Google Scholar 

  • Montixi, C., Langlet, C., Bernard, A.M., Thimonier, J., Dubois, C., Wurbel, M.A., Chauvin, J.P., Pierres, M. and He, H.T. 1998. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17: 5334–5348.

    Article  PubMed  CAS  Google Scholar 

  • Murray, C.B., Kagan, C.R. and Bawendi, M.G. 2000. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science 30: 545–610.

    Article  CAS  Google Scholar 

  • Niemeyer, C.M. 2001. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 40: 4128–4158.

    Google Scholar 

  • Nin, G.L., Chang, Y.F., Liu, Y.L., Teng, E and Lin, Y.A. 2002. Shape-controlled synthesis of alumina nanoparticles by carboxy-containing organic molecules. Chemical Journal of Chinese Universities-Chinese 23: 345–348.

    Google Scholar 

  • Oliver, J.M., Ukena, T.E., Berlin, R.D. 1974. Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces. Proc. Nat. Acad. Sci. USA 71: 394–398.

    Google Scholar 

  • Oliver, J.M. and Berlin, R.D. 1983. Surface and cytoskeleton events regulating leukocyte membrane topography. Sem. Hematol. 20: 282–304.

    Google Scholar 

  • Parolini, I., Topa, S., Sorice, M., Pace, A., Ceddia, A., Montesoro, E., Pavan, A., Lisanti, M.P., Peschle, C., Sargiacomo, M. 1999. Phorbol ester-induced disruption of the CD4-Lck complex occurs within a detergent-resistant microdomain of the plasma membrane - Involvement of the translocation of activated protein kinase C isoforms. J. Biol. Chem. 274: 14176–14187.

    Google Scholar 

  • Pawson, T. and Nash, P. 2003. Assembly of cell regulatory systems through protein interaction domains. Science 300: 445–452.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, J.R., Deanin, G.G., Seagrave, J.C., Davis, B.H., Oliver, J.M. 1985. Membrane and cytoskeletal changes associated with IgE-mediated serotonin release in rat basophilic leukemia cells. J. Cell Biol. 101: 2145–2155.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, J.R., Oliver, J.M. and Wilson, B.S. 2002. Observing signal transduction, endocytosis and degranulation by immunogold labeling and transmission electron microscopy on membrane sheets. Am. Biotech. Methods. 20: 18–22.

    Google Scholar 

  • Philimonenko, A.J., Janacek, J. and Hozak, P. 2000. Statistical evaluation of colocalization patterns in immunogold labeling experiments. J Struct. Biol. 132: 201–210.

    Article  PubMed  CAS  Google Scholar 

  • Pralle, A., Keller, P., Florin, E-L., Simons, K. and Hörber, J.K.H. 2000. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148: 997–1007.

    Article  PubMed  CAS  Google Scholar 

  • Prior, I.A., Muncke, C., Parton, R.G. and Hancock, J.F. 2003. Direct visualization of ras proteins in spatially distinct cell surface microdomains. J Cell Biol 1690: 165–170.

    Article  Google Scholar 

  • Rao, N., Dodge, I. and Band, H. 2002. The Cbl family of ubiquitin ligases: critical negative regulators of tyrosine kinase signaling in the immune system. J. Leukoc. Biol. 71: 753–763.

    PubMed  CAS  Google Scholar 

  • Reed, R.A., Mattai, K. and Shipley, G.G. 1987. Interaction of cholera toxin with ganglioside GM1 receptors in supported lipid monolayers. Biochemistry 26: 824–832

    Article  PubMed  CAS  Google Scholar 

  • Ribi, H.O., Ludwig, D.S., Mercer, K.L., Schoolnik, G.K. and Kornberg, R.D. 1988. 3-Dimensional structure of cholera toxin penetrating a lipid membrane. Science 239: 1272–1276.

    Google Scholar 

  • Saitoh, S., Arudchandran, R., Manetz, T.S., Zhang, W, Sommers, C.L., Love, P.E., Rivera, J. and Samelson, L.E. 2000. LAT is essential for FccRI-mediated mast cell activation. Immunity 12: 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Sanan, D.A., Anderson, R.G.W. 1991. Simultaneous visualization of LDL receptor distribution and clathrin lattices on membranes torn from the upper surface of cultured cells. J. Histochem. Cytochem. 39: 1017–1024.

    Google Scholar 

  • Sanders, M.L. 1996. Characterizing molecular aggregation on cell surfaces from spatial point patterns. PhD Thesis. Department of Mathematics and Statistics, University of New Mexico.

    Google Scholar 

  • Schade, A.E. and Levine, A.D. 2002. Lipid raft heterogeneity in human peripheral blood T lymphoblasts: A mechanism for regulating the initiation of TCR signal transduction. J. Immunol. 168: 2233–2239.

    Google Scholar 

  • Seagrave, J.C., Pfeiffer, J.R., Wofsy, C., Oliver, J.M. 1991. The relationship of IgE receptor topography to secretion in RBL-2H3 mast cells. J. Cell Phys. 148: 139–151.

    Article  CAS  Google Scholar 

  • Schuck S., Honsho, M., Ekroos, K., Shevchenko, A. and Simons, K. 2003. Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA. 100: 5795–5800.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387: 569–572.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S.J. and Nicolson, G.L. 1972. The fluid mosaic model of the structure of cell membranes. Science 175: 720–731.

    Article  PubMed  CAS  Google Scholar 

  • Stauffer, T.P. and Meyer, T. 1997. Compartmentalized IgE receptor-mediated signal transduction in living cells. J. Cell Biol. 139: 1447–1454.

    Article  PubMed  CAS  Google Scholar 

  • Stoyan, D., Kendall, W.S. and Mecke, J. 1995. Stochastic Geometry and its Applications. Wiley Series in Probability and Statistics. Wiley, Chichester, UK.

    Google Scholar 

  • Stump, R.E, Pfeiffer, J.R., Schneebeck, M.C., Seagrave, J.C. and Oliver, J.M. 1989. Mapping gold-labeled receptors on cell surfaces by backscattered electron imaging and digital image analysis. Studies on the IgE receptor on mast cells. Am. J. Anat. 185: 128–141.

    Google Scholar 

  • Surviladze, Z., Drâberovâ, L., Kubínovâ, L., Drdber, P. 1998. Functional heterogeneity of Thy-1 membrane microdomains in rat basophilic leukemia cells. Eur. J. Immunol. 28: 1847–1858.

    Google Scholar 

  • Surviladze, Z., Drâberovâ, L., Kovârovd, L., Boubelik, M. and DrAber, P. 2001. Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur. J. Immunol. 31: 1–10.

    Google Scholar 

  • Teranishi, T., Kurita, R. and Miyake, M. 2000. Shape control of Pt nanoparticles. Journal of Inorganic and Organometallic Polymers 10: 145–156.

    Article  CAS  Google Scholar 

  • Teruel, M.N. and Meyer, T. 2000. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103: 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Varma, R. and Mayor, S. 1998. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394: 798–801.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, B.S., Pfeiffer, J.R. and Oliver, J.M. 2000. Observing FceRI signaling from the inside of the mast cell membrane. J. Cell Biol. 149: 1131–1142.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, B.S., Pfeiffer, J.R., Surviladze, Z., Gaudet, E.A. and Oliver, J.M. 2001. High resolution mapping of mast cell membranes reveals primary and secondary domains of FceRI and LAT. J. Cell Biol. 15: 645–658.

    Article  Google Scholar 

  • Wilson, B.S. and Oliver, J.M. 2001. Effector roles of IgE antibodies: Targeting allergen to the high affinity IgE receptor for FceRI-dependent signaling and antigen presentation. In: B. Zweiman and L.B. Schwartz (Eds), Inflammatory Mechanisms in Allergic Diseases. Marcel Dekker, New York. pp 197–232.

    Google Scholar 

  • Wilson, B.S., Pfeiffer, J.R. and Oliver, J..M. 2002. FceRI signaling observed from the inside of the mast cell membrane. Mol. Immunol. 38: 1259–1268.

    Article  PubMed  CAS  Google Scholar 

  • Wofsy, C., Sanders, M.L., Donahoe, G.W., Pujol, M. and Oliver, J.M. 1995. Quantifying IgE receptor aggregation from SEM-immunocytology. Microscopy and Microanalysis 1: 782–784.

    Google Scholar 

  • Zhang, J., Leiderman, K., Wilson, B.S., Oliver, J.M. and Steinberg, S.L. 2003. The acquisition and analysis of nanoparticle data. Ms in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oliver, J.M. et al. (2004). Membrane Receptor Mapping: The Membrane Topography of FcεRI Signaling. In: Quinn, P.J. (eds) Membrane Dynamics and Domains. Subcellular Biochemistry, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5806-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5806-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3447-5

  • Online ISBN: 978-1-4757-5806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics