Skip to main content

Immunotoxins and Antibody-Drug Conjugates for Cancer Treatment

  • Chapter
Biomedical Aspects of Drug Targeting

Abstract

A large number of cytotoxic compounds are currently used as chemotherapeutic drugs to treat various malignancies. In general, the therapeutic efficacy of these drugs is limited by their narrow therapeutic window’ primarily due to their lack of selectivity in killing cells that results in systemic toxicity at therapeutic doses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pietersz, G. A., Krauer, K., and McKenzie, I. F. The use of monoclonal antibody immunoconjugates in cancer therapy. Adv Exp Med Biol, 353: 169–179, 1994.

    Article  Google Scholar 

  2. Chari, R. V. Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy. Adv Drug Deliv Rev, 31: 89–104, 1998.

    Article  Google Scholar 

  3. Guillemard, V. and Saragovi, H. U. Taxane-antibody conjugates afford potent cytotoxicity, enhanced solubility, and tumor target selectivity. Cancer Res, 61: 694699, 2001.

    Google Scholar 

  4. Chari, R. V., Martell, B. A., Gross, J. L., Cook, S. B., Shah, S. A., Blättler, W. A., McKenzie, S. J., and Goldmacher, V. S. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res, 52: 127–131, 1992.

    Google Scholar 

  5. Pietersz, G. A. The linkage of cytotoxic drugs to monoclonal antibodies for the treatment of cancer. Bioconjug Chem, 1: 89–95, 1990.

    Article  Google Scholar 

  6. Trail, P. A., Willner, D., Knipe, J., Henderson, A. J., Lasch, S. J., Zoeckler, M. E., TrailSmith, M. D., Doyle, T. W., King, H. D., Casazza, A. M., Braslawsky, G. R., Brown, J., Hofstead, S. J., Greenfield, R. S., Firestone, R. A., Mosure, K., Kadow, K. F., Yang, M. B., Hellstrom, K. E., and Hellstrom, I. Effect of linker variation on the stability, potency, and efficacy of carcinoma-reactive BR64-doxorubicin immunoconjugates. Cancer Res, 57: 100–105, 1997.

    Google Scholar 

  7. Zhu, Z., Kralovec, J., Ghose, T., and Mammen, M. Inhibition of Epstein-Barr-virus- transformed human chronic lymphocytic leukaemic B cells with monoclonalantibody-adriamycin (doxorubicin) conjugates. Cancer Immunol Immunother, 40: 257–267, 1995.

    Google Scholar 

  8. Sivam, G. P., Martin, P. J., Reisfeld, R. A., and Mueller, B. M. Therapeutic efficacy of a doxorubicin immunoconjugate in a preclinical model of spontaneous metastatic human melanoma. Cancer Res, 55: 2352–2356, 1995.

    Google Scholar 

  9. Trail, P. A., Willner, D., Lasch, S. J., Henderson, A. J., Hofstead, S., Casazza, A. M., Firestone, R. A., Hellstrom, I., and Hellstrom, K. E. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science, 261: 212–215, 1993.

    Article  Google Scholar 

  10. Tolcher, A. W. BR96-doxorubicin: been there, done that! J Clin Oncol, 18: 4000, 2000.

    Google Scholar 

  11. Arnon, R. and Sela, M. In vitro and in vivo efficacy of conjugates of daunomycin with anti-tumor antibodies. Immunol Rev, 62: 5–27, 1982.

    Google Scholar 

  12. Sedlacek, H.-H., Seemann, G., Hoffmann, D., Czech, J., Lorenz, P., C., K., and Bosslet, K. Antibodies as carriers of cytotoxicity, pp. 74–76. Basel; New York: Karger, 1992.

    Google Scholar 

  13. Lord, J. M., Roberts, L. M., and Robertus, J. D. Ricin: structure, mode of action, and some current applications. Faseb J, 8: 201–208, 1994.

    Google Scholar 

  14. Yamaizumi, M., Mekada, E., Uchida, T., and Okada, Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell, 15: 245–250, 1978.

    Article  Google Scholar 

  15. Fodstad, O., Kvalheim, G., Godal, A., Lotsberg, J., Aamdal, S., Host, H., and Pihl, A. Phase I study of the plant protein ricin. Cancer Res, 44: 862–865, 1984.

    Google Scholar 

  16. Frankel, A. E. Immunotoxins, Boston, Norwell: Kluwer Academic Publishers; 1988.

    Google Scholar 

  17. Ghetie, V. and Vitetta, E. Immunotoxins in the therapy of cancer: from bench to clinic. Pharmacol Ther, 63: 209–234, 1994.

    Article  Google Scholar 

  18. Goldmacher, V. S., Scott, C. F., Lambert, J. M., McIntyre, G. D., Blättler, W. A., Collnhson, A. R., Stewart, J. K., Chong, L. D., Cook, S., Slayter, H. S., and et al. Cytotoxicity of gelonin and its conjugates with antibodies is determined by the extent of their endocytosis. J Cell Physiol, 141: 222–234, 1989.

    Article  Google Scholar 

  19. Blakey, D. C., J., W. E., M., W. P., and E., T. P. Antibody toxin conjugates: a perspective. In: H. Waldmann (ed.), Monoclonal antibody therapy, Vol. 45, pp. 5090. Basel: Karger, 1988.

    Google Scholar 

  20. Mandel, R., Ryser, H. J., Ghani, F., Wu, M., and Peak, D. Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase. Proc Nat ! Acad Sci U S A, 90: 4112–4116, 1993.

    Article  Google Scholar 

  21. Barbieri, L., Battelli, M. G., and Stirpe, F. Reduction of ricin and other plant toxins by thiol:protein disulfide oxidoreductases. Arch Biochem Biophys, 216: 380–383, 1982.

    Article  Google Scholar 

  22. Varandani, P. T., Raveed, D., and Nafz, M. A. Insulin degradation. XXIII. Distribution of glutathione-insulin transhydrogenase in isolated rat hepatocytes as studied by immuno-ferritin and electron microscopy. Biochim Biophys Acta, 538: 343–353, 1978.

    Article  Google Scholar 

  23. Yoshimori, T., Semba, T., Takemoto, H., Akagi, S., Yamamoto, A., and Tashiro, Y. Protein disulfide-isomerase in rat exocrine pancreatic cells is exported from the endoplasmic reticulum despite possessing the retention signal. J Biol Chem, 265: 15984–15990, 1990.

    Google Scholar 

  24. Sellers, J. R., Cook, S., and Goldmacher, V. S. A cytotoxicity assay utilizing a fluorescent dye that determines accurate surviving fractions of cells. J Immunol Methods, 172: 255–264, 1994.

    Article  Google Scholar 

  25. Lambert, J. M., Goldmacher, V. S., Collinson, A. R., Nadler, L. M., and Blättler, W. A. An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res, 51: 6236–6242, 1991.

    Google Scholar 

  26. Kreitman, R. J. Immunotoxins. Expert Opin Pharmacother, 1: 1117–1129, 2000.

    Article  Google Scholar 

  27. Scott, C. F., Jr., Goldmacher, V. S., Lambert, J. M., Jackson, J. V., and McIntyre, G. D. An immunotoxin composed of a monoclonal antitransferrin receptor antibody linked by a disulfide bond to the ribosome-inactivating protein gelonin: potent in vitro and in vivo effects against human tumors. J Natl Cancer Inst, 79: 1163–1172, 1987.

    Google Scholar 

  28. Shah, S. A., Halloran, P. M., Ferris, C. A., Levine, B. A., Bourret, L. A., Goldmacher, V. S., and Blättler, W. A. Anti-B4-blocked ricin immunotoxin shows therapeutic efficacy in four different SCID mouse tumor models. Cancer Res, 53: 1360–1367, 1993.

    Google Scholar 

  29. Brinkmann, U., Pai, L. H., FitzGerald, D. J., Willingham, M., and Pastan, I. B3(Fv)- PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc Natl Acad Sci U S A, 88: 8616–8620, 1991.

    Article  Google Scholar 

  30. Grossbard, M. L., Press, O. W., Appelbaum, F. R., Bernstein, I. D., and Nadler, L. M. Monoclonal antibody-based therapies of leukemia and lymphoma. Blood, 80: 863878, 1992.

    Google Scholar 

  31. Grossbard, M. L., Multani, P. S., Freedman, A. S., O’Day, S., Gribben, J. G., Rhuda, C., Neuberg, D., and Nadler, L. M. A Phase II study of adjuvant therapy with antiB4-blocked ricin after autologous bone marrow transplantation for patients with relapsed B-cell non-Hodgkin’s lymphoma. Clin Cancer Res, 5: 2392–2398, 1999.

    Google Scholar 

  32. Senderowicz, A. M., Vitetta, E., Headlee, D., Ghetie, V., Uhr, J. W., Figg, W. D., Lush, R. M., Stetler-Stevenson, M., Kershaw, G., Kingma, D. W., Jaffe, E. S., and Sausville, E. A. Complete sustained response of a refractory, post-transplantation, large B-cell lymphoma to an anti-CD22 immunotoxin. Ann Intern Med, 126: 88 2885, 1997.

    Google Scholar 

  33. Lynch, T. J., Jr., Lambert, J. M., Coral, F., Shefner, J., Wen, P., Blättler, W. A., Collinson, A. R., Ariniello, P. D., Braman, G., Cook, S., Esseltine, D., Elias, A., Skarin, A., and Ritz, J. Immunotoxin therapy of small-cell lung cancer: a phase I study of N901-blocked ricin. J Clin Oncol, 15: 723–734, 1997.

    Google Scholar 

  34. Kreitman, R. J., Wilson, W. H., Bergeron, K., Raggio, M., Stetler-Stevenson, M., FitzGerald, D. J., and Pastan, I. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med, 345: 241–247, 2001.

    Article  Google Scholar 

  35. Ghetie, M. A., Ghetie, V., and Vitetta, E. S. Immunotoxins for the treatment of B-cell lymphomas. Mol Med, 3: 420–427, 1997.

    Google Scholar 

  36. Frankel, A. E., Kreitman, R. J., and Sausville, E. A. Targeted toxins. Clin Cancer Res, 6: 326–334, 2000.

    Google Scholar 

  37. Baluna, R. and Vitetta, E. S. Vascular leak syndrome: a side effect of immunotherapy. Immunopharmacology, 37.• 117–132, 1997.

    Google Scholar 

  38. Baluna, R., Rizo, J., Gordon, B. E., Ghetie, V., and Vitetta, E. S. Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak syndrome. Proc Natl Acad Sci U S A, 96: 3957–3962, 1999.

    Article  Google Scholar 

  39. Nicolaou, K. C., Stabila, P., Esmaeli-Azad, B., Wrasidlo, W., and Hiatt, A. Cell-specific regulation of apoptosis by designed enediynes. Proc Natl Acad Sci U S A, 90. 3142–3146, 1993.

    Article  Google Scholar 

  40. Hamann, P. R., Hinman, L. M., Hollander, I., Beyer, C. F., Lindh, D., Holcomb, R., Hallett, W., Tsou, H. R., Upeslacis, J., Shochat, D., Mountain, A., Flowers, D. A., and Bernstein, I. Gemtuzumab Ozogamicin, A Potent and Selective Anti-CD33 Antibody-Calicheamicin Conjugate for Treatment of Acute Myeloid Leukemia. Bioconjug Chem, 13: 47–58, 2002.

    Article  Google Scholar 

  41. Knoll, K., Wrasidlo, W., Scherberich, J. E., Gaedicke, G., and Fischer, P. Targeted therapy of experimental renal cell carcinoma with a novel conjugate of monoclonal antibody 138H11 and calicheamicin thetal1. Cancer Res, 60: 6089–6094, 2000.

    Google Scholar 

  42. Dowell, J. A., Korth-Bradley, J., Liu, H., King, S. P., and Berger, M. S. Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol, 41: 1206–1214, 2001.

    Article  Google Scholar 

  43. Liu, C., Tadayoni, B. M., Bourret, L. A., Mattocks, K. M., Derr, S. M., Widdison, W. C., Kedersha, N. L., Ariniello, P. D., Goldmacher, V. S., Lambert, J. M., Blättler, W. A., and Chari, R. V. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc Natl Acad Sci U S A, 93: 8618–8623, 1996.

    Article  Google Scholar 

  44. Issell, B. F. and Crooke, S. T. Maytansine. Cancer Treat Rev, 5: 199–207, 1978.

    Article  Google Scholar 

  45. Chari, R. V., Jacket, K. A., Bourret, L. A., Den, S. M., Tadayoni, B. M., Mattocks, K. M., Shah, S. A., Liu, C., Blättler, W. A., and Goldmacher, V. S. Enhancement of the selectivity and antitumor efficacy of a CC-1065 analogue through immunoconjugate formation. Cancer Res, 55: 4079–4084, 1995.

    Google Scholar 

  46. Ojima, I., Slater, J. C., Kuduk, S. D., Takeuchi, C. S., Gimi, R. H., Sun, C. M., Park, Y. H., Pera, P., Veith, J. M., and Bernacki, R. J. Syntheses and structure-activity relationships of taxoids derived from 14 beta-hydroxy-10-deacetylbaccatin III. J Med Chem, 40: 267–278, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldmacher, V.S., Blättler, W.A., Lambert, J.M., Chari, R.V.J. (2002). Immunotoxins and Antibody-Drug Conjugates for Cancer Treatment. In: Muzykantov, V., Torchilin, V. (eds) Biomedical Aspects of Drug Targeting. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4627-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4627-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5312-4

  • Online ISBN: 978-1-4757-4627-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics