Skip to main content

Abstract

Lichens are symbiotic organisms composed of a fungal partner, the mycobiont, usually in association with one or more photosynthetic partners, the photobiont(s). The photobionts can be green alga, cyanobacteria or both. There are approximately 17,000 species of mycobionts whereas there are only ca. 40 species ofphotobionts. Therefore, the taxonomic name of the lichen is traditionally determined by the species of the fungal partner. The mycobiont, being the host partner for the photobiont, generally determines the morphology of the lichen species. Most lichen mycobionts are not known to exist naturally without the photobiont, whereas many of the photobionts, like the cyanobacteria Nostoc, Scytonema, and the green algae, Trentepohlia, are known to flourish alone in nature. However, because the symbiosis is so complex, lichens are normally referred to as individual organisms rather than separate organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abo-Khatwa, A.N., Al-Robai, A.A., and Al-Jawhari, D.A., 1996, Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria, Nat. Toxins 4: 96–102.

    Article  PubMed  CAS  Google Scholar 

  • Airaksinen, M.M., Perua, P., Ala-Fossi-Salokangas, L., Antere, S., Lukkarinen, J., Saikkonen, M., and Stenback, F., 1986, Toxicity of plant material used as emergency food during famines in Finland, J. Ethnopharm. 18: 273–296.

    Article  CAS  Google Scholar 

  • Ali, M.S., Mahmud, S., Perveen, S., Rizwani, G.H., and Ahmad, V.U., 1999, Screening for the antimicrobial properties of the leaves of Calophyllum inophyllum Linn., Guttiferae. J. Chem. Soc. Pak. 21: 174–178.

    CAS  Google Scholar 

  • Asahina,Y. and Shibata, S., 1954, Chemistry of Lichen Substances, Society for the promotion of science, Tokyo.

    Google Scholar 

  • Bachelor, F.W., King, G.G., and Richardson, J., 1990, Phlebic acids C and D, lichen acids from Peltigera aphthosa, Phytochemistry 29: 601–604.

    Article  CAS  Google Scholar 

  • Bachmann, H., and Portmann, P., 1981, Agent for oxidative dyeing of hair, Ger. Offen. DE 2939303 pp. 18.

    Google Scholar 

  • Bouaid, K., and Vincente, C., 1998, Chlorophyll degradation affected by lichen substances, Annales Botanici Fennici. 35: 71–74.

    CAS  Google Scholar 

  • Brewer, D., Jen, W.C., Jones, G.A., and Taylor, A., 1984, The antibacterial activity of some naturally occurring 2,5dihydroxy-1,4-benzoquinones, Can. J. Microbiol. 30: 1068–1072.

    Article  PubMed  CAS  Google Scholar 

  • Cha, H.-J., Park, M.-T., Chung, H.-Y., Kim, N. D., Sato, H., Seiki, M., and Kim, K.-W., 1998. Ursolic acid-induced down-regulation of MMP-9 gene is mediated through the nuclear translocation of glucocorticoid receptor in HT1080 human fibrosarcoma cells, Oncogene 16: 771–778.

    Article  PubMed  CAS  Google Scholar 

  • Chang, L.-C., Sheu, H.-M., Huang, Y.-S., Tsai, T.-R., and Kuo, K.-W.,1999., A novel function of emodin: enhancement of the nucleotide excision repair of UV- and cisplatin-induced DNA damage in human cells, Biochem. Pharmacol. 58: 49–57.

    Google Scholar 

  • Choi, J.S., Chung, H.Y., Jung, H.A., Park, H.J., and Yokozawa, T., 2000, Comparative evaluation of antioxidant potential of alaternin (2-hydroxyemodin) and emodin, J. Agric. Food Chem. 48: 6347–6351.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J.S., Lee, H.J., Park, K.Y., Ha, J., Ok, K., and Sam, S., 1997, In vitro antimutagenic effects of anthraquinone aglycons and naphthopyrone glycosides from Cassia tora, Planta Med. 63: 11–14.

    CAS  Google Scholar 

  • Clark, S.J., Henderson, I.F., Hill, D.J., and Martin, A.P., 1999, Use of lichen secondary metabolites as antifeedants to protect higher plants from damage caused by slug feeding, Ann. Appl. Biol. 134: 101–108.

    Article  CAS  Google Scholar 

  • Culberson, C.F., 1969, Chemical and Botanical Guide to Lichen Products, University of North Carolina Press, Chapel Hill, USA.

    Google Scholar 

  • Culberson, C.F., and Elix, J.A., 1989, Lichen substances, in: Methods in Plant Biochemistry Vol.1: Plant Phenolics, Dly and Harboume, eds., Academic Press, London.

    Google Scholar 

  • Culberson, C.F., Culberson, W.L., and Johnson, A., 1992, Characteristic products in cultures of chemotypes of the Ramalina siliquosa complex, Mycologia 84: 705–714.

    Article  Google Scholar 

  • Duan, H., Takaishi, Y., Momota, H., Ohmoto, Y., Taki, T., Jia, Y., and Li, D., 1999, Immunosuppressive diterpenoids from Tripterygium wilfordii, J. Nat. Prod. 62: 1522–1525.

    Article  PubMed  CAS  Google Scholar 

  • Elix, J.A., 1996, Biochemistry and secondary metabolites, in: Lichen Biology, Cambridge University Press, Cambridge, London.

    Google Scholar 

  • Elix, J.A., Lumbsch, H.T., and Wardlaw, J.H., 1995, Conhypoprotocetraric acid, a new lichen ß-orcinol depsidone, Aust. J. Chem. 48: 1479–1483.

    Article  CAS  Google Scholar 

  • Elix, J.A., and McCaffery, L.F., 1997, Epiphorellic acid 3, a new lichen diphenyl ether, Aust. J. Chem. 50: 1104–1103.

    Google Scholar 

  • Elix, J.A., and Wardlaw, J.H., 1996, The structure of dissectic acid, a ß-orcinol meta-depside from the lichen Heterodermia dissecta, Aust. J. Chem. 49: 539–540.

    Article  CAS  Google Scholar 

  • Endo, Y., Hayashi, H., Sato, T., Maruno, M., Ohta, T., and Nozoe, S., 1994, Confluentic acid and 2’-0-methylperlatolic acid, monoamine oxidase B inhibitors in a Brazilian plant, Himatanthus sucuuba, Chem. Pharm. Bull. 42: 1198–1201

    Article  PubMed  CAS  Google Scholar 

  • Endo, T., Takahagi, T., Kinoshita, Y., Yamamoto, Y., and Sato, F., 1998, Inhibition of photosystem II of spinach by lichen-derived depsides, Biosci. Biotechnol. Biochem. 62: 2023–2027.

    Article  CAS  Google Scholar 

  • Ernst-Russell, M.A., Chai, C.L.L., Hume, A.M., Waring, P., Hockless, D.C.R., and Elix, J.A., 1999, Structure revision and cytotoxic activity of scabrosin esters, epidithiopiperazinediones from the lichen Xanthiparmelia scabrosa, Aust. J. Chem. 52: 279–283.

    Article  CAS  Google Scholar 

  • Ernst-Russell, M.A., Chai, C.L.L., Wardlaw, J. H., and Elix, J.A., 2000, Euplectin and coneuplectin, new naphthopyrones from the lichen Flavoparmelia euplecta, J. Nat. Prod. 63: 129–131.

    Article  PubMed  CAS  Google Scholar 

  • Fahselt, D., 1993, UV absorbance by thallus extracts ofumbilicate lichens, Lichenologist 25: 415–422.

    Google Scholar 

  • Fahselt, D., 1996, Individuals, populations and population ecology, in: Lichen Biology, T.H. Nash III, ed., Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Ferrari, G., Ghione, and M., Ghirardi, P., 1988, Antiplaque anticaries dentifrices containing usnic acid, S. African ZA 8704549, pp. 24.

    Google Scholar 

  • Fernandez, E., Reyes, A., Hidalgo, M.E., and Quilhot, W., 1998, Photoprotector capacity of lichen metabolites assessed through the inhibition of the 8-methoxypsoralen photobinding to protein, J. Photochem. Photobiol. 42: 195–201.

    Article  CAS  Google Scholar 

  • Findlay, J., 2000, Modified calycins for targeting ofhair fibers or skin surface, PCT Int. Appl. WO 0048558, pp. 33.

    Google Scholar 

  • Gardner, C.R. and Mueller, D.M., 1981, Factors affecting the toxicity of several lichen acids: Effect of pH and lichen acid concentration, Amer. J. Bot. 68: 87–95.

    Article  CAS  Google Scholar 

  • Giez, I., Lange, O.L., and Proksch, P., 1994, Growth retarding activity of lichen substances against the polyphagous herbivorous insect Spodoptera littoralis, Biochem. Syst. Ecol. 22: 113–120.

    Article  CAS  Google Scholar 

  • Goldner, W.R., Hoffman, F.M., and Medve, R.J., 1986, Allelopathic effects of Cladonia cristatella on ectomycorrhyizal fungi common to bituminous strip-mine spoils, Can. J. Bot., 64: 1586–1590.

    Article  Google Scholar 

  • Gollapudi, S.R., Telikepalli, H., Jampani, H.B., Mirhom, Y.W., Drake, S.D., Bhattiprolu, K.R., Vander V., David, M., and Lester, A., 1994, Alectosarmentin, a new antimicrobial dibenzofuranoid lactol from the lichen, Alectoria sarmentosa, J. Nat. Prod. 57: 934–938.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Tejero, M.R., Martinez-Lirola, M.J., Casares-Porcel, M., and Molero-Mesa, J., 1995, Three lichens used in popular medicine in eastern Andalucia (Spain), Econ. Bot. 49: 96–98.

    Article  Google Scholar 

  • Guzow-Krzeminska, B., and Wegrzyn, G., 2000, Potential use of restriction analysis of PCR-amplified DNA fragments in construction of molecular data-based identification keys of lichens, Mycotaxon 76: 305–313.

    Google Scholar 

  • Hale, M.E., 1983, The Biology of Lichens, Edward Arnold, London.

    Google Scholar 

  • Harris, R.C., Brodo, I.M., and Tonsberg, T. 2000, Lecanora thysanophora, a common leprose lichen in eastern North America, Bryologist 103: 790–793.

    Google Scholar 

  • Hawksworth, D.L., and Hill, D.J., 1984, The Lichen—forming Fungi, Blackie Press, Glasgow.

    Book  Google Scholar 

  • Helminen, J., Jokiranta, J., Paatero, E., Hotanen, U., and Hautala, M., 2000, Preparation and use of plant sterol derivatives offruit acids, PCT Int. Appl. WO 0023461, pp. 27.

    Google Scholar 

  • Hesbacher, S., Giez, I., Embacher, G., Fiedler, K., Max, W., Trawoger, A., Turk, R., Lange, O.L., and Proksch, P., 1995, Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera), J. Chem. Ecol. 21: 2079–2089.

    Article  CAS  Google Scholar 

  • Hidalgo, M.E., Fernandez, E., Quilhot, W., and Lissi, E., 1994, Antioxidant activity of depsides and depsidones, Phytochemistry 37: 1585–1587.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, M., Miura, Y., Kinoshita, Y., Yamamoto, Y., and Mayama, S., 1993, Acne-controlling antibacterial agents containing usnic acids or lichesterinic acids, Jpn. Kokai Tokkyo Koho, pp. 3.

    Google Scholar 

  • Hollosy, F., Meszaros, G., Bokonyi, G., Idei, M., Seprodi, A., Szende, B., and Keri, G., 2000, Cytostatic, cytotoxic and protein tyrosine kinase inhibitory activity of ursolic acid in A431 human tumor cells, Anticanc. Res. 20: 4563–4570.

    CAS  Google Scholar 

  • Hui, Y.H., Chang, C.J., Smith, D.L., and McLaughlin, J.L., 1990, 16a-Hydroxy-(-)-kauranoic acid: a selectively cytotoxic diterpene from Annona bullata, Pharm. Res. 7: 376–378.

    Google Scholar 

  • Hwang, J.-S., Song, K.-S., Kim, Y.-S., Seok, SA., Lee, T-14., and Yoo, I.-D., 1996, Lipid peroxidation inhibitors from Polyozellus multiplex, Sanop Misaengmul Hakhoechi 24: 591–596.

    CAS  Google Scholar 

  • Ichinose, T., Miller, M., and Shibamoto, T., 1994, Inhibition of malondialdehyde formation from liver microsomes by a lichen constituent, Food Chem. Toxicol. 32: 1167–1168.

    Article  PubMed  CAS  Google Scholar 

  • Ingolfsdottir, K., Wiedemann, B., Birgisdottir, M., Nenninger, A., Jonsdottir, S., and Wagner, H., 1997, Inhibitory effects of baeomycesic acid from the lichen Thamnolia subuliformis on 5-lipoxygenase in vitro, Phytomedicine 4: 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, T., and Iwaida, M., 1980, On the utilization of usnic acid, a lichen substance, J. SCCJ 14: 57–61.

    CAS  Google Scholar 

  • Ishikawa, H., Nishimuro, S., Watanbe, T., and Hirota, M., 1997, Use of ursolic acid for the manufacture of a medicament for suppressing metastasis, Eur. Pat. Appl. EP 774255, pp. 7.

    Google Scholar 

  • Karnefelt, I., 1990, Evidence of a slow evolutionary change in the speciation of lichens, Bibleotheca Lichenologica 38: 291–306.

    Google Scholar 

  • Kashiwada, Y., Nagao, T., Hashimoto, A., Ikeshiro, Y., Okabe, H., Cosentino, L.M., and Lee, K.-H., 2000, Anti-AIDS agents38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives, J. Nat. Prod. 63: 1619–1622.

    Article  PubMed  CAS  Google Scholar 

  • Konig, G.M., Wright, A.D., and Franzblau, S.G., 2000, Assessment of antimycobacterial activity of a series of mainly marine derived natural products, Planta Med. 66: 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa, S., 1970, Lichen dyes: one of the economic uses of lichens, Natur. Sci. Mus. 37: 14–18.

    Google Scholar 

  • Kumar, S.K.C., and Müller, K., 1999a, Lichen metabolites. 1. Inhibitory action against leukotriene B4 biosynthesis by a non-redox mechanism, J. Nat. Prod. 62: 817–820.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S.K.C., and Müller, K., I 999b, Lichen metabolites. 2. antiproliferative and cytotoxic activity of gyrophoric acid, usnic, and diffractaic acid on human keratinocyte growth, J. Nat. Prod. 62: 821–823.

    Google Scholar 

  • Kumar, S.K.C., and Müller, K., 2000, Depsides as non-redox inhibitors of leukotriene B4 biosynthesis and HaCaT cell growth. 2. Novel analogues of obtusatic acid, Eur. J Med. Chem. 35: 405–411.

    Article  CAS  Google Scholar 

  • Kwak, J.-Y., Rhee, I.-K., Lee, K.-B., Hwang, J.-S., Yoo, I.-D., and Song, K.-S., 2000, Thelephoric acid and kynapcin9 in mushroom Polyozellus multiplex inhibit propyl endopeptidase in vitro, J. Microbiol. Biotechnol. 9: 798–803.

    Google Scholar 

  • Lawrey, J.D., 1983a, Lichen herbivory preference: A test of two hypotheses, Amer. J. Bot. 70: 1188–1194.

    Article  Google Scholar 

  • Lawrey, J.D., 1983b, Vulpinic and pinastric acids as lichen antiherbivore compounds: contrary evidence, Bryologist 86: 365–369.

    Article  CAS  Google Scholar 

  • Lawrey, J.D., 1986, Biological role of lichen substances, Bryologist 9: 111–122.

    Article  Google Scholar 

  • Lawrey, J.D., 1993, Lichen allelopathy, Amer. J. Bot.(S) 80: 103.

    Google Scholar 

  • Lawrey, J.D., 1995, Lichen allelopathy: A review, Am. Chem. Soc. Symp. Ser. 582: 26–38.

    CAS  Google Scholar 

  • Li, B., Lin, Z., and Sun, H., 1991, The chemical constituents of four lichens from China, Yunnan Zhiwu Yanjiu 13: 81–84.

    CAS  Google Scholar 

  • Livesey, S.A., Conner, J., and Currie, L.M., 1997, Prolonged preservation of blood platelets and prevention of cytokine generation by platelets using inhibitor compositions and cold temperatures, PCT Int. Appl. WO 9730350, pp. 23.

    Google Scholar 

  • Lubrano, C., Poirier, F., and Robin, J.-R., 1999, Use of ergosterol and its derivatives for stimulating the proliferation ofskin cells, PCT Int. Appl. WO 9913858, pp. 21.

    Google Scholar 

  • Manoj lovic, N.T., Solujic, S., Sukdolak, S., and Krstic, L.J., 2000, Isolation and antimicrobial activity of anthraquinones from some species of the lichen genus Xanthoria, J. Serb. Chem. Soc. 65: 555–560.

    CAS  Google Scholar 

  • Marx, J., 2001, Anti-inflammaroties inhibit cancer growth — but how? Science 291: 581–582.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, S., Nii, F., Shimizu, M., and Watanabe, I., 1971, Inhibition of phage growth by an antibiotic rugulosin isolated from Myrothecium verucaria I. Properties of the antiphage effect, Jap. J. Microbiol. 15: 113–120.

    PubMed  CAS  Google Scholar 

  • Nash III, T.H., 1996, Lichen Biology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Neamati, N., Hong, H., Mazumder, A., Wang, S., Sunder, S., Nicklaus, M.C., Milne, G.W.A., Proksa, B., and Pommier, Y., 1997, Depsides and depsidones as inhibitors of HIV-1 integrase: Discovery of novel inhibitors through 3D database searching, J. Med. Chem. 40: 942–951.

    Article  PubMed  CAS  Google Scholar 

  • Nylander,W., 1866, Circa novum in studio Lichenum criterium chemicum, Flora 49: 198–201.

    Google Scholar 

  • Okuyama, E., Hossain, C.F., and Yamazaki, M., 1991, Monoamine oxidase inhibitors from a lichen, Solorina crocea (L.) Ach., Shoyakugaku Zasshi 45: 159–162.

    CAS  Google Scholar 

  • Osawa, T., Kumon, H., Reece, C.A., and Shibamoto, T., 1991, Inhibitory effect of lichen constituents on mutagenicity induced by heterocyclic amines, Environ. Mol. Mutagen. 18: 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Parker, J.C., McPherson, R.K., Andrews, K.M., Levy, C.B., Dubins, J.S., Chin, J.E., Petry, P. V., Hulin, B., Perry, D.A., Inagaki, T., Dekker, K.A., Tachikawa, K., Sugie, Y., and Treadway, J.L., 2000, Effects of skyrin, a receptor-selective glucagon antagonist, in rat and human hepatocytes, Diabetes 49: 2079–2086.

    Article  PubMed  CAS  Google Scholar 

  • Peres, V., and Nagem, T.J., 1997, Trioxygenated naturally occurring xanthones, Phytochemistry 44: 191–214.

    Article  CAS  Google Scholar 

  • Peres, V., Nagem, T.J., de Oliveira, F. F. 2000. Tetraoxygenated naturally occurring xanthones, Phytochemistry 55: 683–710.

    Article  PubMed  CAS  Google Scholar 

  • Peyronel, D., Dal Farra, D., and Mantelin, J., 2000, Sterol 3-sulfates, new active principles having cosmetic and dermatological use, Fr. Demande FR 2789312, pp. 14.

    Google Scholar 

  • Proksch, P., 1995, The protective system of lichens against being consumed by animals, Dtsch. Apoth. Ztg. 135: 21–24.

    CAS  Google Scholar 

  • Raju, K.R., Rao, A.V.N.A., and Rao, P.S., 1985, Leprapinic acid derivatives with antibacterial activity, Fitoterapia 56: 221–224.

    CAS  Google Scholar 

  • Rao, A.V.N., Appa, and Prabhakar, M.C., 1987, Pharmacological actions of leprapinic acid, a lichen metabolite, Fitoterapia 58: 221–228

    CAS  Google Scholar 

  • Richardson, D.H.S., 1988, Medicinal and other economic aspects of lichens, in: Handbook ofLichenology, Vol. 3, M. Galun, ed., CRC Press, Boca Raton, pp. 93–108.

    Google Scholar 

  • Rojas, I.S., Lotina-Hennsen, B., and Mata, R., 2000, Effect of lichen metabolites on thylakoid electron transport and photophosphorylation in isolated spinach chloroplasts, J. Nat. Prod. 63: 1396–1399.

    CAS  Google Scholar 

  • Romagni, J.G., Meazza, G., Nanayakkara, D., and Dayan, F.E., 2000, The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor ofplantp-hydroxyphenylpyruvate dioxygenase, FEBSLetters 480: 301–305.

    Article  PubMed  CAS  Google Scholar 

  • Rosato, V.G., and Scutari, N.C., 2000, On the presence of Ramalina complanata (Ramalinaceae, lichenized Ascomycotina) and allied species in Argentina, Mycotaxon 74: 141–151.

    Google Scholar 

  • Rundel, P.W., 1969, Clinal variation in the production of usnic acid in Cladonia subtenuis, Bryologist 72: 40–44.

    CAS  Google Scholar 

  • Sanchez, M.-L., Bats, J.-P., and Moulines, J., 1997, Thermal hydrolysis of the main depsides and depsidones contained in the lichens used in perfumery, Riv. Ital. EPPOS, 100–104.

    Google Scholar 

  • Saklani, A., and Upreti, D.K., 1992, Folk uses of some lichens in Sikkim, J. Ethnopharm. 37: 229–233.

    Article  CAS  Google Scholar 

  • Sawada, S., Mori, H., Sawanakunanont, Y., Nishida, R., Yamamoto, Y., and Hosokawa, T., 2000, Polysubstituted polyphenols of cajuput tree leaf and their anti-proliferative activity to cultured mouse t-lymphoma cells, EL4, Bull. Kyoto Univ. Educ., Ser. B 95 /96: 1–9.

    Google Scholar 

  • Schreiber, K., 1975, Plant growth inhibitors of plant origin, Ger. Environ. Qual. Saf., Suppl. 3: 483–485.

    CAS  Google Scholar 

  • Schulz, H., and Albroscheit, G., 1989, Characterization of oakmoss products used in perfumery by high-performance liquid chromatography, J. Chromatogr. 466: 301–306.

    Article  CAS  Google Scholar 

  • Seifert, P., and Bertrand, C., 1995, Usnic acid: a natural preservative from lichens, Cosmet. News 18: 169–172.

    CAS  Google Scholar 

  • Silverman, R. B., Ding, C.Z., and Gates, K. S., 1993, Design and mechanism of monoamine oxidase inactivators from an organic chemical perspective, in: Perspectives in Medicinal Chemistry, B. Testa, E. Kyburz, W. Fuhrer, and R. Giger, eds, Verlag Helvetica Chomica Acta, Basel, Weinheim, New York, Basel, Cambridge.

    Google Scholar 

  • Slansky, F., 1979, Effect of lichen chemicals atranorin and vulpinic acid upon feeding and growth of larvae of the yellow-striped armyworm, Spodoptera ornithogalli, Env. Entomol. 8: 865–868.

    CAS  Google Scholar 

  • Solhaug, K.A., and Gauslaa, Y., 1996, Parietin, a photoprotective secondary product of the lichen Xanthoria parietina, Oecologia 108: 412–418.

    Article  Google Scholar 

  • Su, H.-Y., Chemg, S.-H., Chen, C.-C., and Lee, H., 1995, Emodin inhibits the mutagenicity and DNA adducts induced by 1-nitropyrene, Mutat. Res. 329: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H., Niu, F., Lin, Z., Cao, D., Li, B., and Wu, J., 1990, Chemical constituents of four medicinal lichens, Zhiwu Xuebao 32: 783–788.

    CAS  Google Scholar 

  • Szerdahelyi, R., Balla, J., and Kerenyi, I., 1982, Study of the sorption of drugs by plastics, Hung. Acta Pharm. Hung. 52: 15–21.

    CAS  Google Scholar 

  • Taguchi, H., Sankawa, U., and Shibata, S., 1969, Biosynthesis of natural products. VII. Biosynthesis of usnic acid in lichens, Chem. Pharm. Bull. 17: 2061–2064.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, F.J.R., 1987, An overview of the status of evolutionary cell symbiosis theories, in: Endocytobiology, Vol. 3, J.L. Lee and J.F. Fredrick, eds., New York, Academy of Sciences.

    Google Scholar 

  • Tehler, A., 1994, Cladistic analysis in ascomycete systematics: theory and practice, in: First International Workshop on Ascomycete Systematics, D.L. Hawksworth, ed., Plenum Press, London.

    Google Scholar 

  • Tehler, A., 1996, Systematics, phylogeny and classification, in: Lichen Biology, T.H. Nash III, ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Trinkaus, U., and Mayrhofer, H., 2000, Revision of the Buellia epidaea group (Lichenized Ascomycetes, Physciaceae). 1. Species of the northern hemisphere, Nova Hedwigia 71: 271–314.

    Google Scholar 

  • Turner, N.J., 1977, Economic importance of black tree lichen (Bryoria fremontii) to the Indians of western North America, Econ. Bot. 31: 461–470.

    Article  Google Scholar 

  • Weniger, B., Haag-Berrurier, M., and Anton, R., 1982, Plants of Haïti used as antifertility agents, J. Ethnopharmacol. 6: 67–84.

    Article  PubMed  CAS  Google Scholar 

  • West, R.R., Labroo, V., Piggott, J.R., Smith, R.A., and McKernan, P.A., 1994, Use of skyrin and analogs for the treatment of diabetes mellitus and process for their preparation, PCT Int. Appl. WO 9414427, pp. 35.

    Google Scholar 

  • Wirth, V., 1987, Die Flechten Baden-Wurtembergs, Verbreitungsatlas Stuttgart, Eugen Ulmer GmbH.

    Google Scholar 

  • Wu, J.X., Xu, J.Y., and Yuan, Y.Z., 2000, Effect of emodin and sandostatin on metabolism of eicosanoids in acute necrotizing pancreatitis, World J. Gastroenterol. 6: 293–294.

    PubMed  CAS  Google Scholar 

  • Yamamoto, Y., Miura, Y., Kinoshita, Y., Higuchi, M., Yamada, Y., Murakami, A., Ohigashi, H., and Koshimizu, K., 1995, Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein-Barr virus activation, Chem. Pharm. Bull. 43: 1388–1390.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, M., Satoh, Y., Maebayashi, Y., and Horie, Y., 1988, Monoamine oxidase inhibitors from a fungus, Emericella navahoensis, Chem. Pharm. Bull. 36: 670–675.

    Article  PubMed  CAS  Google Scholar 

  • Mang, L., Lau, Y.-K., Xia, W., Hortobagyi, G. N., and Hung, M.-C., 1999, Tyrosine kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel, Clin. Cancer Res. 5: 343–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Romagni, J.G., Dayan, F.E. (2002). Structural Diversity of Lichen Metabolites and Their Potential Use. In: Upadhyay, R.K. (eds) Advances in Microbial Toxin Research and Its Biotechnological Exploitation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4439-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4439-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3384-3

  • Online ISBN: 978-1-4757-4439-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics