Skip to main content
Log in

Oxidative polymorphism of debrisoquine is not related to human colo-rectal cancer

  • Short Communications
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

The oxidative polymorphism of debrisoquine (DBQ) has been determined in 89 patients with colo-rectal cancer and in 556 normal control subjects. Four patients and 34 controls, with a metabolic ratio >12.6, were classified as poor metabolisers of DBQ (n.s.).

No difference was found in the distribution of the frequencies of the MR of DBQ between patients and controls.

It is concluded that polymorphic oxidation of DBQ is not related to the risk of developing colo-rectal cancer in human beings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Horai Y, Ishizaki T (1988) Pharmacogenetics and its clinical implications. Part II. Oxidation polymorphism. Rational Drug Ther 22: 1–8

    Google Scholar 

  2. Price Evans DA, Mahgoub A, Sloan TP, Idle JR, Smith RL (1980) A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. J Med Genet 17: 102–105

    Google Scholar 

  3. Nebert DW, Nelson DR, Adsnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Kemper B, Levin W, Phillips IR, Sato R, Waterman MR (1989) The P450 superfamily: Updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA 8: 1–13

    Google Scholar 

  4. Eichelbaum M, Baur MP, Dengler HJ, Osikowska-Evaers BO, Tieves G, Zekorn C, Rittner C (1987) Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br J Clin Pharmacol 23: 455–458

    Google Scholar 

  5. Skoda RC, González FJ, Demierre A, Meyer UA (1988) Two mutant alleles of the human cytochrome P-450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci USA 85: 5240–5243

    Google Scholar 

  6. Sugimura T (1982) Mutagens, carcinogens, and tumor promoters in our daily food. Cancer 49: 1970–1984

    Google Scholar 

  7. Gelboin HV (1983) Carcinogen, drugs, and cytochrome P-450. N Engl J Med 309: 105–107

    Google Scholar 

  8. Guengerich FP (1988) Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res 48: 2946–2954

    Google Scholar 

  9. Shimada T, Iwasaki M, Martin MW, Guengerich FP (1989) Human liver microsomal Cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in salmonella typhimurium TA 1535/pSK1002. Cancer Res 49: 3218–3228

    Google Scholar 

  10. González FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW, Gelboin HV, Hardwick JP, Meyer UA (1988) Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331: 442–446

    Google Scholar 

  11. Idle JR, Mahgoub A, Sloan TP, Smith RL, Mbanefo CO, Bababunmi EA (1981) Some observations on the oxidation phenotype status of Nigerian patients presenting with cancer. Cancer Lett 11: 331–338

    Google Scholar 

  12. Ayesh R, Idle JR, Ritchie JC, Crothers MJ, Hetzel MR (1984) Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature 312: 169–170

    Google Scholar 

  13. Law MR, Hetzel MR, Idle JR (1989) Debrisoquine metabolism and genetic predisposition to lung cancer. Br J Cancer 59: 686–687

    Google Scholar 

  14. Roots I, Drakoulis N, Ploch M, Heinemeyer G, Loddenkemper R, Mincks T, Nitz M, Otte F, Koch M (1988) Debrisoquine hydroxylation phenotype, acetylation phenotype, and ABO blood groups as genetic host factors of lung cancer risk. Klin Wochenschr 66 [Suppl XI]: 87–97

    Google Scholar 

  15. Speirs CJ, Murray S, Davies DS, Mabadeje AFB, Boobis AR (1990) Debrisoquine oxidation phenotype and susceptibility to long cancer. Br J Pharmacol 29: 101–109

    Google Scholar 

  16. Caporaso N, Hayes B, Dosemeci M, Hoover R, Ayesh R, Hetzel M, Idle J (1989) Lung cancer risk, occupational exposure, and the debrisoquine metabolic phenotype. Cancer Res 49: 3675–3679

    Google Scholar 

  17. Law MR (1990) Genetic predisposition to lung cancer. Br J Cancer 61: 195–206

    Google Scholar 

  18. Kaisary A, Smith P, Jaczq E, McAllister CB, Wilkinson GR, Ray WA, Branch RA (1987) Genetic predisposition to bladder cancer: Ability to hydroxylate debrisoquine and mephenytoin as risk factors. Cancer Res 47: 5488–5493

    Google Scholar 

  19. Benítez J, Ladero JM, Fernández-Gundín MJ, Llerena A, Cobaleda J, Martínez C, Muñoz JJ, Vargas E, Prados J, González-Rojas F, Rodriguez-Molina J, Usón AC (1990) Polymorphic oxidation of debrisoquine in bladder cancer. Ann Med 22: 157–160

    Google Scholar 

  20. Cartwright RA, Philip PA, Rogers HJ, Glashan RW (1984) Genetically determined debrisoquine oxidation capacity in bladder cancer. Carcinogenesis 5: 91–92

    Google Scholar 

  21. Roots I, Heinemeyer G, Drakoulis N, Kampf D (1987) The role of pharmacogenetics in drug epidemiology. In: Kewitz H, Roots I, Voigt K (eds) Epidemiological concepts in clinical pharmacology. Springer, Berlin Heidelberg New York

    Google Scholar 

  22. Philip PA, Rogers HJ, Harper PG (1987) Acetylation and oxidation phenotypes in malignant lymphoma. Cancer Chemother Pharmacol 20: 235–238

    Google Scholar 

  23. Ladero JM, Benítez J, Jara C, Llerena A, Valdivielso MJ, Muñoz JJ, Vargas E (1991) Polymorphic oxidation of debrisoquine in women with breast cancer. Oncology (in press)

  24. Fonne-Pfister R, Meyer UA (1988) Xenobiotic and endobiotic inhibitors of cytochrome P-450db1 function, the target of the debrisoquine/sparteine type polymorphism. Biochem Pharmacol 37: 3829–3835

    Google Scholar 

  25. Lennard MS, Silas JH, Smith AJ, Tucker GT (1977) Determination of debrisoquine and its 4-hydroxy metabolite in biological fluids by gas-chromatography with flame ionization and nitrogen-selective detection. J Chromatogr 133: 161–166

    Google Scholar 

  26. Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL (1977) Polymorphic hydroxylation of debrisoquine in man. Lancet II: 584–586

    Google Scholar 

  27. Price-Evans DAP, Harmer D, Downham DY, Whibley EJ, Idle JR, Ritchie J, Smith RL (1983) The genetic control of sparteine and debrisoquine metabolism in man with new methods of analysing bimodal distribution. J Med Genet 20: 321–329

    Google Scholar 

  28. Idle JR (1989) Poor metabolisers of debrisoquine reveal their true colours. Lancet II: 1097

    Google Scholar 

  29. Caporaso N, Pickle LW, Bale S, Ayesh R, Hetzel M, Idle J (1989) The distribution of debrisoquine metabolic phenotypes and implications for the suggested association with lung cancer risk. Genet Epidemiol 6: 517–524

    Google Scholar 

  30. Henthorn TK, Benítez J, Avram MJ, Martínez C, Llerena A, Cobaleda J, Krejcie TC, Gibbons RD (1989) Assessment of the debrisoquin and dextrometorphan phenotyping tests by gaussian mixture distribution analysis. Clin Pharmacol Ther 45: 328–333

    Google Scholar 

  31. Carrasco JL (1988) El método estadístico en la investigación médica. Editorial Ciencia, Madrid

    Google Scholar 

  32. Steiner E, Iselius L, Alván G, Lindsten J, Sjöqvist F (1985) A family study of genetic and environmental factors determining polymorphic hydroxylation of debrisoquin. Clin Pharmacol Ther 38: 394–401

    Google Scholar 

  33. Eichelbaum M, Mineshita S, Ohnhaus EE, Zekorn C (1986) The influence of enzyme induction on polymorphic sparteine oxidation. Br J Clin Pharmacol 22: 49–53

    Google Scholar 

  34. Schellens JHM van der Wart JHF, Brugman M, Breimer DD (1989) Influence of enzyme induction and inhibition on the oxidation of nifedipine, sparteine, mephenytoin and antipyrine in humans as assessed by a “cocktail” study design. J Pharmacol Exp Ther 249: 638–645

    Google Scholar 

  35. de Waziers I, Cugnenc PH, Yang CS, Leroux JP, Beaune PH (1990) Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferasas in rat and human hepatic and extrahepatic tissues. J Pharmacol Exp Ther 253: 387–394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladero, J.M., Benítez, J., González, J.F. et al. Oxidative polymorphism of debrisoquine is not related to human colo-rectal cancer. Eur J Clin Pharmacol 40, 525–527 (1991). https://doi.org/10.1007/BF00315234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315234

Key words

Navigation