Skip to main content

Classical Trajectory Studies of Kev Ions Interacting with Solid Surfaces

  • Chapter
Potential Energy Surfaces and Dynamics Calculations

Abstract

Classical dynamics has been used extensively over the past twenty years to aid in our microscopic understanding of chemical reactions and properites of matter. As our experience has grown, the complexity of the systems studied has expanded from simple atom-diatom collisions1,2 and hard sphere liquids3 to more complicated gas-phase reactants (see the chapters by Schatz and Elgersma in this book) and more realistic liquids.4 Dynamics calculations allow the determination of average experimental quantities, and at the same time, they give physical insight into the microscopic mechanisms. Results of the calculations are very visual, allowing one to picture the motion of particles. The variety of applications of classical dynamics in chemistry is evidenced by the contributions to this volume.

Alfred P. Sloan Research Fellow

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. T. Wall, L. A. Hiller, Jr., and J. Mazur, Statistical computation of reaction probabilities, J. Chem. Phys. 29: 255 (1958).

    Article  CAS  Google Scholar 

  2. F. T. Wall, L. A. Hiller, Jr., and J. Mazur, Statistical computation of reaction probabilities, II, J. Chem. Phys. 35: 1284 (1961).

    Article  CAS  Google Scholar 

  3. D. L. Bunker, Monte Carlo calculations of triatomic dissociation rates. I. N2O and O3, J. Chem. Phys. 37: 393 (1962).

    Article  CAS  Google Scholar 

  4. J. C. Keck, Statistical investigation of dissociation cross-sections for diatoms, Disc. Faraday Soc. 33: 173 (1962).

    Article  Google Scholar 

  5. N. C. Blais and D. L. Bunker, Monte Carlo calculations. III. A general study of biomolecular exchange reactions, J. Chem. Phys. 39: 315 (1963).

    Article  CAS  Google Scholar 

  6. See also, for example, D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections: Quasiclassical and semiclassical methods, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum Press, New York (1979), p. 505.

    Chapter  Google Scholar 

  7. B. J. Adler and T. E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31: 459 (1959).

    Article  Google Scholar 

  8. See, for example, “Computer Modeling of Matter”, P. Lykos, ed., ACS Symposium Series, No. 86, Washington, D.C. (1978).

    Google Scholar 

  9. D. E. Harrison, Jr., W. L. Moore, Jr., and H. T. Holcombe, Computer simulation of sputtering II, Rad. Eff. 17: 167 (1973).

    Article  Google Scholar 

  10. D. E. Harrison, Jr., P. W. Kelly, B. J. Garrison, and N. Winograd, Low energy ion impact phenomena on single crystal surfaces, Surface Sci. 76: 311 (1978).

    Article  CAS  Google Scholar 

  11. B. J. Garrison, N. Winograd, and D. E. Harrison, Jr., Formation of small metal clusters by ion bombardment of single crystal surfaces, J. Chem. Phys. 69: 1440 (1978).

    Article  CAS  Google Scholar 

  12. N. Winograd, D. E. Harrison, Jr., and B. J. Garrison, Structure sensitive factors in the ion bombardment of single crystal surfaces, Surface Sci. 78: 467 (1978).

    Article  CAS  Google Scholar 

  13. N. Winograd, B. J. Garrison, and D. E. Harrison, Jr., Angular distributions of ejected particles from ion bombarded clean and reacted single crystal surfaces, Phys. Rev. Lett. 41: 1120 (1978).

    Article  CAS  Google Scholar 

  14. B. J. Garrison, N. Winograd, and D. E. Harrison, Jr., Atomic and molecular ejection from ion bombarded reacted single crystal surfaces, Phys. Rev. B 18: 6000 (1978).

    Article  CAS  Google Scholar 

  15. D. E. Harrison, Jr., W. L. Gay, and H. M. Effron, Algorithm for the calculation of the classical equations of motion of an N-body system, J. Math. Phys. 10: 1179 (1969).

    Article  Google Scholar 

  16. K. E. Foley and B. J. Garrison, Mechanisms of particle ejection from Cu(001) induced by directional orientation of the bombarding primary ion, J. Chem. Phys. 72: 1018 (1980).

    Article  CAS  Google Scholar 

  17. B. J. Garrison, Theory of ion scattering from single crystals, Surface Sci. 87: 683 (1979).

    Article  CAS  Google Scholar 

  18. N. Winograd, B. J. Garrison, and D. E. Harrison, Jr., Mechanisms of CO ejection from ion bombarded single crystal surfaces, J. Chem. Phys. 73: 3473 (1980).

    Article  CAS  Google Scholar 

  19. B. J. Garrison, Mechanisms of ejection of organic molecules from surfaces by keV ion bombardment, J. Amer. Chem. Soc. 102: 6553 (1980).

    Article  CAS  Google Scholar 

  20. B. J. Garrison, manuscript in preparation.

    Google Scholar 

  21. D. M. Heyes, M. Barber, and J. H. R. Clarke, The use of sputtering as a method for analyzing surface chemical compositions: A molecular dynamics study, First International Meeting on SIMS, Muenster, Germany, September 1977.

    Google Scholar 

  22. N. Winograd, B. J. Garrison, T. Fleisch, W. N. Delgass, and D. E. Harrison, Jr., Structure sensitive factors in molecular cluster ejection by ion bombardment of Ni single crystals reacted with CO and O2, J. Vac. Sci. Tech. 16: 629 (1979).

    Article  CAS  Google Scholar 

  23. G. D. Magnuson and C. E. Carlston, Sputtering yield of single crystals bombarded by 1-to 10-keV ions, J. Appl. Phys. 34: 3267 (1963).

    Article  CAS  Google Scholar 

  24. M. T. Robinson and A. L. Southern, Sputtering experiments with 1-to 5-keV Ar+ ions. II. Monocrystalline targets of Al, Cu, and Au, J. Appl. Phys. 38: 2969 (1967).

    Article  Google Scholar 

  25. D. E. Harrison, Jr., Full lattice simulation of atom ejection mechanisms and sputtering, in: “Proceedings of the Symposium on Sputtering, Perchtoldsdorf-Wien, Austia, April 28–30, 1980”, P. Varge, G. Betz, and F. P. Viebock, eds., Institut für Allgemein Technische Universität Wien, Austria.

    Google Scholar 

  26. A. Anderman, AFCRL-66-688 Atomics International, Canoga Park, CA, unpublished. Taken from reference 5.

    Google Scholar 

  27. B. Rosen, “International Tables of Selected Constants”, Pergamon Press, New York (1970).

    Google Scholar 

  28. D. E. Harrison, Jr. and C. B. Delaplain, Computer simulation of the sputterings of clusters, J. Appl. Phys. 47: 2242 (1976).

    Google Scholar 

  29. M. Barber, R. S. Bardoli, J. C. Vickerman, and J. Wolstenholme, SIMS study of adsorption on Ni(110), (100), and (111), in: “Proceedings of the 7th International Vacuum Congress and 3rd International Conference on Solid Surfaces”, R. Dobrozemsky, ed., F. Berger und Söhne, Vienna (1977), p. 983.

    Google Scholar 

  30. For a good review of this topic, see G. Carter and J. S. Colligan, “Ion Bombardment of Solids”, American Elsevier, New York (1968).

    Google Scholar 

  31. S. P. Holland, B. J. Garrison, and N. Winograd, Surface structure from angle-resolved SIMS: Oxygen on Cu(001), Phys. Rev. Lett. 43: 220 (1979).

    Article  CAS  Google Scholar 

  32. S. P. Holland, B. J. Garrison, and N. Winograd, Azimuthal anisotropies of dimer ions ejected from ion bombarded Ni(001), Phys. Rev. Lett. 44: 756 (1980).

    Article  CAS  Google Scholar 

  33. M. van Hove and S. Y. Tong, Chemisorption bond lengths of chalcogen overlayers at a low coverage by convergent perturbation methods, J. Vac. Sci. Tech. 12: 230 (1975).

    Article  Google Scholar 

  34. S. Kapur and B. J. Garrison, Theoretical studies of the angular distributions of oxygen atoms ejected from an ion bombarded c(2×2) overlayer of oxygen on Ni(001): I. Effect of geometry and II. Effect of potential, manuscripts in preparation.

    Google Scholar 

  35. R. A. Gibbs and N. Winograd, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garrison, B.J. (1981). Classical Trajectory Studies of Kev Ions Interacting with Solid Surfaces. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics