Skip to main content

Reactive Scattering Cross Sections III: Quasiclassical and Semiclassical Methods

  • Chapter
Atom - Molecule Collision Theory

Abstract

Classical trajectory methods for calculating inelastic scattering cross sections are covered in earlier chapters of this book, especially Chapters 10 and 12. This chapter covers the extension of this technique to treat reactive scattering. The first question which must be answered in a classical trajectory study of a reactive system is whether one should be using this method at all. Classical trajectory studies are useful not just because they yield reaction cross sections, angular distributions, reactivity as a function of initial and final energy distribution, and other observable reaction at-tributes, but also for the insight they may offer into the actual reaction event. One may look at the atomic motions in representative trajectories, and one may calculate such nonobservables as opacity functions (probability of reaction as a function of impact parameter) and dependence on features of the potential energy surface. But one must be careful not to overinterpret the reaction by a trajectory study. Because many reaction attributes depend sensitively on quantitative and qualitative features of the potential energy surfaces which are not quantitatively understood, one must be cautious about believing that the dynamical details of a particular trajectory calculation are in general accord with reality. Trajectory calculations are discussed from this point of view in Chapter 18 of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Powell and B. Craseman, Quantum Mechanics, Addison-Wesley, Reading, Massachusetts (1961), pp. 98–100.

    Google Scholar 

  2. W.H. Miller, Classical-limit quantum mechanics and the theory of molecular collisions, Adv. Chem. Phys. 25, 69–177 (1974).

    Article  Google Scholar 

  3. M. Karplus and L.M. Raff, Theoretical investigations of reactive collisions in molecular beams: K + CH3I, J. Chem. Phys. 41, 1267–1277 (1964).

    Article  CAS  Google Scholar 

  4. D.L. Bunker and N.C. Blais, Monte Carlo calculations. V. Three-dimensional study of a general bimolecular interaction potential, J. Chem. Phys. 41, 2377–2386 (1964).

    Article  CAS  Google Scholar 

  5. M. Karplus, R.N. Porter, and R.D. Sharma, Exchange reactions with activation energy. I. Simple barrier potential for (H, H3), J. Chem. Phys. 43, 3259–3287 (1965).

    Article  CAS  Google Scholar 

  6. P.J. Kuntz, M.H. Mok, and J.C. Polanyi, Distribution of reaction products. V. Reactions forming an ionic bond, M + XC(3D), J. Chem. Phys. 50, 4623–4652 (1969).

    Article  CAS  Google Scholar 

  7. J.C. Polanyi and W.H. Wong, Location of energy barriers. I. Effect on the dynamics of reactions A + BC, J. Chem. Phys. 51, 1439–1450 (1969).

    Article  CAS  Google Scholar 

  8. D.L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287–325 (1971).

    CAS  Google Scholar 

  9. J.T. Muckerman, Monte Carlo calculations of energy partitioning and isotope effects in reactions of fluorine atoms with H2, HD, and D2, J. Chem. Phys. 54, 1155–1164 (1971).

    Article  CAS  Google Scholar 

  10. R.L. Jaffe and J.B. Anderson, Classical trajectory analysis of the reaction F + H2 → HF + H, J. Chem. Phys. 54, 2224–2236 (1971)

    Article  CAS  Google Scholar 

  11. R.L. Jaffe and J.B. Anderson, Erratum: 56, 682 (1972).

    Google Scholar 

  12. A.G. Clarke and G. Burns, Trajectory studies of atomic recombination reactions, J. Chem. Phys. 55, 4717–4730 (1971).

    Article  CAS  Google Scholar 

  13. D.L. Thompson, On a classical trajectory study of energy transfer in some atom- diatomic molecule systems, J. Chem. Phys. 56, 3570 (1972)

    Article  CAS  Google Scholar 

  14. D.L. Thompson, Erratum: 65, 5031–5032 (1976).

    Google Scholar 

  15. L.M. Raff, D.L. Thompson, L.B. Sims, and R.N. Porter, Dynamics of the molecular and atomic mechanisms for the hydrogen-iodine exchange reaction, J. Chem. Phys. 56, 5998–6027 (1972);

    Article  CAS  Google Scholar 

  16. L.M. Raff, D.L. Thompson, L.B. Sims, and R.N. Porter, Erratum: 65, 4338 (1976).

    Google Scholar 

  17. J.T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. III. The hot-atom reactions of 1 8F with HD, J. Chem. Phys. 57, 3388–3396(1972).

    Article  CAS  Google Scholar 

  18. C.A. Parr, J.C. Polanyi, and W.H. Wong, Distribution of reaction products (theory). VIII. CI + HI, CI + DI, J. Chem. Phys. 58, 5–20 (1973).

    Article  CAS  Google Scholar 

  19. N.C. Blais and D.G. Truhlar, Monte Carlo trajectories: Dynamics of the reaction F + D2 on a semiempirical valence-bond potential energy surface, J. Chem. Phys. 58, 1090–1108 (1973).

    Article  CAS  Google Scholar 

  20. H.H. Suzukawa, Jr., D.L. Thompson, V.B. Cheng, and M. Wolfsberg, Empirical testing of the suitability of a nonrandom integration method for classical trajectory calculations: Comparisons with Monte Carlo techniques, J. Chem. Phys. 59, 4000–4008 (1973).

    Article  CAS  Google Scholar 

  21. J.C. Polanyi and J.L. Schreiber, The dynamics of bimolecular reactions, in Physical Chemistry: An Advanced Treatise, Vol. VIA, Kinetics of Gas Reactions, W. Jost, editor, Academic Press, New York (1974), pp. 383–487.

    Google Scholar 

  22. J.M. White and D.L. Thompson, Monte Carlo quasiclassical trajectory study of Br + HBr and H + HBr: Effect of reactant vibration and rotation on reaction rates and energy transfer, J. Chem. Phys. 61, 719–732 (1974).

    CAS  Google Scholar 

  23. N.C. Blais and D.G. Truhlar, Monte Carlo trajectories: The reactions H + Br2 → HBr + Br, J. Chem. Phys. 61, 4186–4203 (1974)

    Article  CAS  Google Scholar 

  24. N.C. Blais and D.G. Truhlar, Erratum: 65, 3803 (1976).

    CAS  Google Scholar 

  25. P.J. Kuntz, The classical trajectory method, in Interaction between Ions and Molecules, P. Ausloos, editor, Plenum Press, New York (1975), pp. 123–137.

    Google Scholar 

  26. R.N. Porter, D.L. Thompson, L.M. Raff, and J.M. White, Comparison of the combined phase-space/trajectory and quasiclassical trajectory methods in the study of reaction dynamics: H + I2 and H + Br2, J. Chem. Phys. 62, 2429–2445 (1975).

    Article  CAS  Google Scholar 

  27. D.J. Malcome-Lawes, Dynamics of some hydrogen isotopic exchange reactions at high energies, J. Chem. Soc. Faraday Trans.II 71, 1183–1199 (1975).

    Article  Google Scholar 

  28. R.N. Porter, L.M. Raff, and W.H. Miller, Quasiclassical selecton of initial coordinates and momenta for a rotating Morse oscillator, J. Chem. Phys. 63, 2214–2218 (1975).

    Article  CAS  Google Scholar 

  29. J.C. Polanyi, J.L. Schreiber, and J.J. Sloan, Distribution of reaction products, Chem. Phys. 9, 403–412 (1975).

    Article  CAS  Google Scholar 

  30. N.H. Hijazi and J.C. Polanyi, Magnitude and orientation of rotation in exchange reactions A + BC → AB + C. II, Chem. Phys. 11, 1–16 (1975).

    Article  CAS  Google Scholar 

  31. N.C. Blais and D.G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions. I. Potential energy surface and cross sections for dissociation, recombination, and inelastic scattering, J. Chem. Phys. 65, 5335–5356 (1976).

    Article  CAS  Google Scholar 

  32. R.N. Porter and L.M. Raff, Classical trajectory methods in molecular collisions, in Modern Theoretical Chemistry, Vol. 2, Dynamics of Molecular Collisions: Part B, W.H. Miller, editor, Plenum Press, New York (1976), pp. 1–52.

    Google Scholar 

  33. N.C. Blais and D.G. Truhlar, Monte Carlo trajectories: Alignment of HBr rotational angular momentum as a function of scattering angle for the reaction H + Br2 → HBr + Br, J. Chem. Phys. 67, 1540–1546 (1977).

    Article  CAS  Google Scholar 

  34. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Massachusetts (1950).

    Google Scholar 

  35. J.O. Hirschfelder, Coordinates which diagonalize the kinetic energy of relative motion, Int. J. Quantum Chem. Symp. 3, 17–31 (1969).

    Article  Google Scholar 

  36. R.A. LaBudde and R.B. Bernstein, Classical study of rotational excitation of a rigid rotor: Li+ + H2, J. Chem. Phys. 55, 5499–5516 (1971).

    Article  Google Scholar 

  37. M.E. Riley and M.K. Matzen, Non-Maxwellian H and F velocity distributions in in an H2-F2 reaction, J. Chem. Phys. 63, 4787–4799 (1975).

    Article  CAS  Google Scholar 

  38. I.C. Percival, Semiclassical theory of bound states, Adv. Chem. Phys. 36, 1–61 (1977).

    Article  CAS  Google Scholar 

  39. P.J. Davis and I. Polonsky, Numerical interpolation, differentiation, and integration, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, M. Abramowitz and I.A. Stegun, editors, U.S. Government Printing Office, Washington, D.C. (1964), pp. 875–924, especially pp. 888–889.

    Google Scholar 

  40. J.B. Scarborough, Numerical Mathematical Analysis, 4th ed., Johns Hopkins Press, Baltimore, Maryland (1958), pp. 192–198.

    Google Scholar 

  41. Z. Kopal, Numerical Analysis, Chapman and Hall, London (1955), p. 381.

    Google Scholar 

  42. F.J. Smith, The numerical evaluation of the classical angle of deflection and of the J.W.K.B. phase shift, Physica (Utrecht) 30, 497–504 (1964).

    Article  Google Scholar 

  43. R.T. Pack, Space-fixed vs. body-fixed axes in atom-diatomic molecule scattering: Sudden approximations, J. Chem. Phys. 60, 633–639 (1974).

    Article  CAS  Google Scholar 

  44. L. Lapidus and J.H. Seinfeld, Numerical Solution of Ordinary Differential Equations, Academic Press, New York (1971).

    Google Scholar 

  45. M.K. Matzen and M.E. Riley, private communication.

    Google Scholar 

  46. R. Bulirsch and J. Stoer, Numerical treatment of ordinary differential equations by extrapolation methods, Numer. Math. 8, 1–13 (1966).

    Article  Google Scholar 

  47. L.F. Shampine and M.K. Gordon, Computer Solution of Ordinary Differential Equations: The Initial Value Problem, W.H. Freeman, San Francisco (1975).

    Google Scholar 

  48. C.A. Parr, Classical dynamics of triatomic systems, Ph.D. Thesis, California Institute of Technology, Pasadena, California (1968), pp. 47–55, 156–159, 168–176.

    Google Scholar 

  49. P.W. Brumer, Structure and collision complex dynamics of alkali halide dimers, Ph.D. Thesis, Harvard University, Cambridge, Massachusetts (1972), pp. IV-39 to IV-61.

    Google Scholar 

  50. P. Brumer and M. Karplus, Collision complex dynamics in alkali halide exchange reactions, Discuss. Faraday Soc. 55, 80–92 (1973).

    Article  CAS  Google Scholar 

  51. C.W. Gear, Hybrid methods for initial value problems in ordinary differential equations, J. SIAM Numer. Anal. Ser. B 2, 69–86 (1964).

    Google Scholar 

  52. Symposium on Monte Carlo Methods Held at the University of Florida, H.A. Meyer, editor, John Wiley and Sons, New York (1956); see especially the contributions of A.W. Marshall, pp. 1–14, H. Kahn, pp. 146–190, and J.W. Butler, pp. 249–264.

    Google Scholar 

  53. J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods, Methuen & Co., London (1964, corrected printing 1965 ).

    Google Scholar 

  54. The Monte Carlo Method: The Method of Statistical Trials, Yu. A. Schreiber, editor, Pergamon Press, Oxford (1966); see especially the first chapters by Yu. A. Schreiber, pp. 1–90, and I.M. Sobol’, pp. 91–130.

    Google Scholar 

  55. M. Zelen and N.C. Severo, in Handbook of Mathematical Functions, M. Abramowitz and I.A. Stegun, editors, National Bureau of Standards, Washington, D.C. (1964), pp. 925–995; see Table 26. 10.

    Google Scholar 

  56. M.B. Faist, J.T. Muckerman, and F.E. Schubert, Importance sampling and histogrammic representations of reactivity functions and product distributions in Monte Carlo quasiclassical trajectory calculations J. Chem. Phys. 69, 4087–4096 (1978).

    Article  CAS  Google Scholar 

  57. M.H. Hansen, W.N. Hurwitz, and W.G. Madow, Sample Survey Methods and Theory, Vols. 1, 2, John Wiley and Sons, New York (1953), p. 209 (Vol. 1) and pp. 132–134 (Vol. 2.)

    Google Scholar 

  58. N.C. Blais and D.G. Truhlar, Monte Carlo trajectory study of Ar + H2: Vibrational selectivity of dissociative collisions at 4500°K, J. Chem. Phys., in press.

    Google Scholar 

  59. R.C. Tolman, Statistical Mechanics with Applications to Physics and Chemistry, Chemical Catalog Company, New York (1927), pp. 260–270.

    Google Scholar 

  60. D.G. Truhlar, Interpretation of the activation energy, J. Chem. Educ. 55, 309–311 (1978).

    Article  CAS  Google Scholar 

  61. D.G. Truhlar and N.C. Blais, Direct calculation of the equilibrium value of the energy of activation for dissociation of H2 by Ar and evidence for the important contribution of collisional dissociation from low vibrational quantum numbers at shock-tube temperatures, J. Am. Chem. Soc. 99, 8108–8109 (1977).

    Article  CAS  Google Scholar 

  62. D.G. Truhlar and J.C. Gray, Interpretation and temperature dependence of the energy of activation for the reactions H + CI2, H2 + I, H + H2, and isotopic analogues, Chem. Phys. Lett. 57, 93–99 (1978).

    Article  CAS  Google Scholar 

  63. D.G. Truhlar and J.W. Duff, Classical probability matrix: Prediction of quantum- state distributions by a moment analysis of classical trajectories, Chem. Phys. Lett. 36, 551–554 (1975).

    Article  CAS  Google Scholar 

  64. D.G. Truhlar, Quasiclassical predictions of final vibrational state distributions in reactive and nonreactive collisions, Int. J. Quantum Chem. Symp. 10, 239–250 (1976).

    Article  CAS  Google Scholar 

  65. R.J. Gordon, A comparison of exact classical and quantum mechanical calculations of vibrational energy transfer, J. Chem. Phys. 65, 4945–4957 (1976).

    Article  CAS  Google Scholar 

  66. U. Halavee and R.D. Levine, Quantal transition probabilities from classical trajectories: Application to the collinear reactive H + Cl2 system, Chem. Phys. Lett. 46, 35–41 (1977).

    Article  CAS  Google Scholar 

  67. O. Atabek and R. Lefebvre, Moment analysis of dynamics of photodissociation of linear triatomics, J. Chem. Phys. Lett. 52, 29–33 (1977).

    Article  CAS  Google Scholar 

  68. R.J. Gordon, A comparison of exact classical and quantum mechanical calculations of vibrational energy transfer. II. The effect of long-lived collision complexes, J. Chem. Phys. 67, 5923–5929 (1977).

    Article  CAS  Google Scholar 

  69. A. Ben-Shaul, R.D. Levine, and R.B. Bernstein, Entropy and chemical change. II. Analysis of product energy distributions: Temperature and entropy deficiency, J. Chem. Phys. 57, 5427–5447 (1972).

    Article  CAS  Google Scholar 

  70. J.C. Light, Statistical theory of bimolecular exchange reactions, Discuss. Faraday Soc. 44, 14–29 (1968).

    Article  Google Scholar 

  71. D.G. Truhlar and A. Kuppermann, Exact and approximate quantum mechanical reaction probabilities and rate constants for the collinear H + H2 reaction, J. Chem. Phys. 56, 2232–2252 (1972).

    Article  CAS  Google Scholar 

  72. A. Ben-Shaul, R.D. Levine, and R.B. Bernstein, Prior-expectation distribution functions for energy disposal and energy consuption in reactive molecular collisions, J. Chem. Phys. 61, 4937–4938 (1974).

    Article  CAS  Google Scholar 

  73. A. Ben-Shaul, On statistical models and prior distributions in the theory of chemical reactions, Chem. Phys. 22, 341–366 (1977).

    Article  CAS  Google Scholar 

  74. M.B. Faist, The uniform phase space representation of product state distributions of elementary chemical reactions, J. Chem. Phys. 65, 5427–5435 (1976).

    Article  CAS  Google Scholar 

  75. R.B. Bernstein and M.B. Faist, Information content of detailed differential cross sections (molecular beam scattering velocity-angle maps) vs. resolved product state distributions, J. Chem. Phys. 65, 5436–5444 (1976).

    Article  CAS  Google Scholar 

  76. D.G. Truhlar and N.C. Blais, Legendre moment method for calculating differential scattering cross sections from classical trajectories with Monte Carlo initial conditions, J. Chem. Phys. 67, 1532–1539 (1977).

    Article  CAS  Google Scholar 

  77. E.A. Gislason and J.G. Sachs, Expansion of differential cross sections determined from classical trajectory studies in a series of Legendre polynomials, Chem. Phys. Lett. 52, 270–275 (1977).

    Article  CAS  Google Scholar 

  78. J.T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. II. Dependence on the potential surface, J. Chem. Phys. 56, 2997–3006 (1972).

    Article  CAS  Google Scholar 

  79. J.L. Schreiber, Discussion, Faraday Discuss. Chem. Soc. 55, 72–73 (1973).

    Google Scholar 

  80. S.C. Leasure and J.M. Bowman, A dynamic threshold in the F + H2 reaction as determined from three-dimensional quasiclassical-reverse trajectory calculations, Chem. Phys. Lett. 39, 462–467 (1976).

    Article  CAS  Google Scholar 

  81. D.G. Truhlar, J.A. Merrick, and J.W. Duff, Comparison of trajectory calculations, transition state theory, quantum mechanical reaction probabilities, and rate constants for the collinear reaction H + Cl2 → HCl + CI, J. Am. Chem. Soc. 98, 6771–6783 (1976).

    Article  CAS  Google Scholar 

  82. R.C. Tolman, The Principles of Statistical Mechanics, Oxford University Press, London (1938), pp. 48–52.

    Google Scholar 

  83. J. Keck, Statistical investigation of dissociation cross-sections for diatoms, Discuss. Faraday Soc. 33, 173–182 (1962).

    Article  Google Scholar 

  84. J. Keck, Variational theory of reaction rates, Adv. Chem. Phys. 13, 85–121 (1967).

    Article  Google Scholar 

  85. J.C. Keck, Monte Carlo trajectory calculations of atomic and molecular excitation in thermal systems, Adv. At. Molec. Phys. 8, 39–69 (1972).

    Article  CAS  Google Scholar 

  86. J.B. Anderson, Statistical theories of chemical reactions: Distributions in the transition region, J. Chem. Phys. 58, 4684–4692 (1973).

    Article  CAS  Google Scholar 

  87. R.L. Jaffe, J.M. Henry, and J.B. Anderson, Variation theory of reaction rates: Application to F + H2 ⇄ HF + H, J. Chem. Phys. 59, 1128–1141 (1973).

    Article  CAS  Google Scholar 

  88. J.B. Anderson, A test of the validity of the combined phase-space/trajectory method, J. Chem. Phys. 62, 2446–2453 (1975).

    Article  CAS  Google Scholar 

  89. I. Mayer, Some remarks on “Statistical theories of chemical reactions. Distribution in the transition region,” J. Chem. Phys. 60, 2564–2565 (1974).

    Article  CAS  Google Scholar 

  90. W.H. Miller, Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants, J. Chem. Phys. 61, 1823–1834 (1974).

    Article  CAS  Google Scholar 

  91. W.H. Miller, Discussion, Faraday Discuss. Chem. Soc. 55, 71–72 (1973).

    Article  Google Scholar 

  92. H. Essén, G.D. Billing, and M. Baer, Comparison of quantum mechanical and quasi- classical calculations of collinear reaction rate constants for the H + Cl2 and D + Cl2 systems, Chem. Phys. 17, 443–449 (1976).

    Article  Google Scholar 

  93. W.H. Miller, The semiclassical nature of atomic and molecular collisions, Acc. Chem. Res. 4, 161–167 (1971).

    Article  CAS  Google Scholar 

  94. W.H. Miller, Classical S matrix for rotational excitation: Quenching of quantum effects in molecular collisions, J. Chem. Phys. 54, 5386–5397 (1971).

    Article  CAS  Google Scholar 

  95. J.D. Doll, T.F. George, and W.H. Miller, Complex-valued classical trajectories for reactive tunneling in three-dimensional collisions of H with H2, J. Chem. Phys. 58, 1343–1351 (1973).

    Article  CAS  Google Scholar 

  96. A.W. Raczkowski and W.H. Miller, Classical S matrix calculation for vibrationally inelastic transitions in three-dimensional collisions of Li+ with H2, J. Chem. Phys. 61, 5413–5420 (1974).

    Article  CAS  Google Scholar 

  97. R.A. Marcus, The theoretical approach, Faraday Discuss. Chem. Soc. 55, 9–21 (1973).

    Article  CAS  Google Scholar 

  98. H. Kreek, R.L. Ellis, and R.A. Marcus, Semiclassical collision theory: Multidimensional Bessel uniform approximation, J. Chem. Phys. 61, 4540–4544 (1974).

    Article  CAS  Google Scholar 

  99. H. Kreek, R.L. Ellis, and R.A. Marcus, Semiclassical collision theory: Application of multidimensional uniform approximations to atom-rigid rotor system, J. Chem. Phys. 62, 913–926 (1975).

    Article  CAS  Google Scholar 

  100. J.W. Duff and D.G. Truhlar, Classical S matrix: Numerical applications to classically allowed chemical reactions, Chem. Phys. 4, 1–23 (1974).

    Article  CAS  Google Scholar 

  101. J.W. Duff and D.G. Truhlar, Classical S matrix: Application of the Bessel uniform approximation to a chemical reaction, Chem. Phys. Lett. 40, 251–256 (1976).

    Article  CAS  Google Scholar 

  102. E.J. Heller, Time dependent approach to semiclassical dynamics, J. Chem. Phys. 62, 1544–1555 (1975).

    Article  CAS  Google Scholar 

  103. E.J. Heller, Wavepacket path integral formulation of semiclassical dynamics, Chem. Phys. Lett. 34, 321–325 (1975).

    Article  CAS  Google Scholar 

  104. E.J. Heller, Classical S matrix limit of wavepacket dynamics, J. Chem. Phys. 65, 4979–4989 (1976).

    Article  CAS  Google Scholar 

  105. E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749–759 (1932).

    Article  CAS  Google Scholar 

  106. E.J. Heller, Wigner phase space method: Analysis for semiclassical applications, J. Chem. Phys. 65, 1289–1298 (1976).

    Article  CAS  Google Scholar 

  107. W.H. Miller and T.F. George, Semiclassical theory of electronic transitions in low energy atomic and molecular collisions involving several nuclear degrees of freedom, J. Chem. Phys. 56, 5637–5652 (1972).

    Article  CAS  Google Scholar 

  108. J.-T. Hwang and P. Pechukas, The adiabatic theorem in the complex plane and the semiclassical calculation of nonadiabatic transition amplitudes, J. Chem. Phys. 67, 4640–4653 (1977).

    Article  CAS  Google Scholar 

  109. J.O. Hirschfelder and W.J. Meath, The nature of intermolecular forces, Adv. Chem. Phys. 12, 3–106 (1967).

    Article  CAS  Google Scholar 

  110. H. Eyring and S.H. Lin, Potential energy surfaces, in Physical Chemistry: An Advanced Treatise, Vol. VIA, Kinetics of Gas Reactions, W. Jost, editor, Academic Press, New York (1974), pp. 121–186.

    Google Scholar 

  111. J.C. Tully and R.K. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2, J. Chem. Phys. 55, 562–572 (1971).

    Article  CAS  Google Scholar 

  112. J.R. Stine and J.T. Muckerman, On the multidimensional surface intersection problem and classical trajectory “surface hopping,” J. Chem. Phys. 65, 3975–3984 (1976).

    Article  CAS  Google Scholar 

  113. T.F. George and Y.-W. Lin, Multiple transition points in a semiclassical treatment of electronic transitions in atom(ion)-diatom collisions, J. Chem. Phys. 60, 2340–2349 (1974).

    Article  CAS  Google Scholar 

  114. Y.-W. Lin, T.F. George, and K. Morokuma, Semiclassical treatment of electronic transitions in molecular collisions: Collinear H+ + D2 → HD+ + D, J. Chem. Phys. 60, 4311–4322 (1974).

    Article  CAS  Google Scholar 

  115. Y.-W. Lin, T.F. George, and K. Morokuma, Semiclassical treatment of electronic transitions in molecular collisions: Three-dimensional H+ +D+ → HD+ + D, Chem. Phys. Lett. 30, 49–53 (1975).

    Article  CAS  Google Scholar 

  116. A. Komornicki, T.F. George, and K. Morokuma, Decoupling scheme for a semi- classical treatment of electronic transitions in atom-diatom collisions: Real-valued trajectories and local analytic continuation, J. Chem. Phys. 65, 48–54 (1976).

    Article  CAS  Google Scholar 

  117. J.R. Stine and J.T. Muckerman, Conditions for the equivalence of the “surface hopping” and complex-valued-time methods to effect nonadiabatic transitions, Chem. Phys. Lett. 44, 46–49 (1976).

    Article  CAS  Google Scholar 

  118. G.L. Bendazzolli, M. Raimondi, B.A. Garetz, T.F. George, and K. Morokuma, Semiclassical study of collision-induced predissociation: Comparison of the Landau-Zener model with the method of analytic continuation, Theor. Chim. Acta 44, 341–350(1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Truhlar, D.G., Muckerman, J.T. (1979). Reactive Scattering Cross Sections III: Quasiclassical and Semiclassical Methods. In: Bernstein, R.B. (eds) Atom - Molecule Collision Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2913-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2913-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2915-2

  • Online ISBN: 978-1-4613-2913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics