Skip to main content

Piezoelectric Crystals and Ceramics

  • Chapter
Ultrasonic Transducer Materials

Part of the book series: Ultrasonic Technology ((ULTE))

Abstract

Piezoelectric crystals and ceramics are used as detectors and radiators of acoustic power from very low frequencies to above 109 Hz. The lower frequency range is now covered almost exclusively by the piezoelectric ceramics which date from the late 1940’s, and the upper frequency range is covered by new piezoelectric crystals discovered in the 1960’s. The very highest frequency range has been opened up by oriented deposited films of several of the new crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. “IRE Standards on Piezoelectric Crystals, 1949,” Proc. IRE 37, 1378–1395 (1949).

    Google Scholar 

  2. “IRE Standards on Piezoelectric Crystals: Determination of the Elastic, Piezoelectric, and Dielectric Constants—The Electromechanical Coupling Factor, 1958,” Proc. IRE 46, 764–778 (1958).

    Google Scholar 

  3. “IRE Standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics, 1961,” Proc. IRE 49, 1161–1169 (1961).

    Google Scholar 

  4. W. G. Cady, Piezoelectricity, Vols. 1 and 2, Dover, New York, 1964 (Revision of McGraw-Hill, New York, 1946).

    Google Scholar 

  5. W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, Princeton, N. J. (1950).

    Google Scholar 

  6. W. P. Mason, Physical Acoustics and the Properties of Solids, Van Nostrand, Princeton, N. J. (1958).

    Google Scholar 

  7. D. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and Piezomagnetic Materials and their Function in Transducers,” in Physical Acoustics (W. P. Mason, ed.) Vol. 1A, pp. 169–270, Academic Press, New York (1964).

    Google Scholar 

  8. Landolt-Börnstein, “Numerical Data and Functional Relationships in Science and Technology,” (K. H. Hellwege, ed.) Group III, Vol. I, (R. Bechmann and R. F. S. Hearmon), Springer, Berlin (1966). See also Vol. II, Group III (1969).

    Google Scholar 

  9. H. Jaffe and D. Berlincourt, “Piezoelectric transducer materials,” Proc. IEEE 53, 1372–1386 (1965).

    Article  Google Scholar 

  10. “Piezoelectric technology data for designers,” distributed by Piezoelectric Div., Gould, Inc., Bedford, Ohio (1965).

    Google Scholar 

  11. “Piezoelectric ceramics,” distributed by Electronic Components and Materials Div., N. V. Philips, Eindhoven, Netherlands (1968).

    Google Scholar 

  12. J. F. Nye, Physical Properties of Crystals, The Clarendon Press, Oxford, England (1957).

    Google Scholar 

  13. D. Berlincourt, “Piezoelectric and ferroelectric energy conversion,” IEEE Trans. on Sonics and Ultrasonics SU-15, 87–97 (1968).

    Google Scholar 

  14. R. Bechmann, “Contour modes of square plates excited piezoelectrically and determination of electric and piezoelectric coefficients,” Proc. Phys. Soc. (London) 64B, 323–337 (1951).

    CAS  Google Scholar 

  15. R. Holland, “Contour extensional resonant properties of rectangular piezoelectric plates,” IEEE Trans. on Sonics and Ultrasonics SU-15, 97–105 (1968).

    Article  Google Scholar 

  16. R. Holland and E. P. Eer Nisse, Design of Resonant Piezoelectric Devices, M.I.T. Press, Cambridge, Mass. (1969).

    Google Scholar 

  17. W. P. Mason, Electromechanical Transducers and Wave Filters, Van Nostrand, New York (1948).

    Google Scholar 

  18. W. Shockley, D. R. Curran, and D. J. Koneval, “Trapped-energy modes in quartz filter crystals,”J.Acoust. Soc. Am. 41, 981–993 (1967).

    Article  Google Scholar 

  19. W. S. Mortley, “Frequency-modulated quartz oscillators for broadcasting equipment,” Proc. IEE 104B, 239–249 (1956).

    Google Scholar 

  20. R. A. Sykes and W. D. Beaver, “High frequency monolithic crystal filters with possible application to single frequency and single side band use,” Proc. 20th Annual Symposium on Frequency Control, Atlantic City, N. J. (1966), pp. 288–293.

    Google Scholar 

  21. M. Onoe and H. Jumonji, “Analysis of piezoelectric resonators vibrating in trapped-energy modes,” Electronics and Comm. Eng. (Japan) 48, 84–93 (1965).

    Google Scholar 

  22. H. F. Tiersten, “Thickness vibrations of piezoelectric plates,”J.Acoust. Soc. Am. 35, 53–58 (1963).

    Article  Google Scholar 

  23. M. Onoe, H. F. Tiersten, and A. H. Meitzler, “Shift in the location of resonant frequencies caused by large electromechanical coupling in thickness mode resonators,”J.Acoust. Soc. Am. 35, 36–42 (1963).

    Article  Google Scholar 

  24. D. Berlincourt and H. Jaffe, “Elastic and piezoelectric coefficients of single crystal barium titanate,” Phys. Rev. 111, 143–148 (1958).

    Article  CAS  Google Scholar 

  25. D. Berlincourt, H. H. A. Krueger, and B. Jaffe, “Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature, and composition,”J.Phys. Chem. Solids 25, 659–674 (1964).

    Article  CAS  Google Scholar 

  26. D. Berlincourt, “Transducers using forced transitions between ferroelectric and an-tiferroelectric states,” IEEE Trans. on Sonics and Ultrasonics SU-13, 116–125 (1966).

    Article  Google Scholar 

  27. G. E. Martin, U.S. Navy J. of Underwater Acoustics 15, 329–332 (1965).

    Google Scholar 

  28. G. E. Martin, “Vibrations of coaxially segmented longitudinally polarized ferroelectric tubes,”J.Acoust. Soc. Am. 36, 1496–1506 (1964).

    Article  Google Scholar 

  29. R. Holland, “Representation of dielectric, elastic, and piezoelectric losses by complex coefficients,” IEEE Trans. on Sonics and Ultrasonics SU-14, 18–20 (1967).

    Article  Google Scholar 

  30. W. P. Mason and R. A. Sykes, “Low-frequency quartz-crystal cuts having low temperature coefficients,” Proc. IRE 32, 208–215 (1944).

    Article  Google Scholar 

  31. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Letters 5, 17–19 (1964).

    Article  CAS  Google Scholar 

  32. K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations, and etching,”J.Phys. Chem. Solids 27, 983–986 (1966).

    Article  CAS  Google Scholar 

  33. H. J. Levinstein, A. A. Ballman, and C. D. Capio, “Domain structure and Curie temperature of single crystal lithium tantalate,”J.Appl. Phys. 37, 4585–4586 (1966).

    Article  CAS  Google Scholar 

  34. J. E. Guesic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, “The nonlinear optical properties of Ba2NaNb5O15,” Appl. Phys. Letters 11, 269–271 (1967).

    Article  Google Scholar 

  35. N. F. Foster, “Ultrahigh frequency cadmium sulfide transducers,” IEEE Trans. on Sonics and Ultrasonics SU-11, 63–68 (1964).

    Google Scholar 

  36. J. de Klerk and E. F. Kelley, “Coherent phonon generation in the gigacycle range via insulating cadmium sulfide films,” Appl. Phys. Letters 5, 2–3 (1964).

    Article  Google Scholar 

  37. T. R. Sliker and D. A. Roberts, “A thin film CdS-quartz composite resonator,”J.Appl. Phys. 38, 2350–2358 (1967).

    Article  CAS  Google Scholar 

  38. D. L. White, “Depletion layer transducer—A new high frequency ultrasonic transducer,” 1961 IRE Internaťl Conv. Rec. pt. 6, vol. 9 (1961), pp. 304–309.

    Google Scholar 

  39. N. F. Foster, “Diffusion layer ultrasonic transducer,”J.Appl. Phys. 34, 990–991 (1963).

    Article  CAS  Google Scholar 

  40. A. R. Hutson, J. H. McFee, and D. L. White, “Ultrasonic amplification in CdS,” Phys. Rev. Letters 7, 237–239 (1961).

    Article  CAS  Google Scholar 

  41. S. B. Austerman, D. Berlincourt, and H. H. A. Krueger, “Polar properties of BeO single crystals,”J.Appl. Phys. 34, 339–341 (1963).

    Article  CAS  Google Scholar 

  42. D. F. Crisler, J. J. Cupal, and A. R. Moore, “Dielectric, piezoelectric, and electromechanical coupling constants of zinc oxide crystals,” Proc. IEEE 56, 225–226 (1968).

    Article  CAS  Google Scholar 

  43. T. B. Bateman, “Elastic moduli of single-crystal zinc oxide,” J.Appl. Phys. 33, 3309–3312(1962).

    Article  CAS  Google Scholar 

  44. D. A. Berlincourt, H. Jaffe, and L. R. Shiozawa, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev. 129, 1009–1017 (1963).

    Article  CAS  Google Scholar 

  45. A. R. Hutson, “Piezoelectric devices utilizing aluminum nitride,” U.S. Patent 3,090, 876, May 21, 1963.

    Google Scholar 

  46. A. W. Warner, G. A. Coquin, A. H. Meitzler, and J. L. Fink, “Piezoelectric Properties of Ba2NaNb5O15,” Appl. Phys. Letters 14, 34–35 (1969).

    Article  CAS  Google Scholar 

  47. A. W. Warner, “New piezoelectric materials,” presented at the 19th Frequency Control Symp., sponsored by U.S. Army Electronics Command, Fort Monmouth, N. J., April, 1965.

    Google Scholar 

  48. M. Marezio, “The crystal structure of LiGaO2,” Acta Cryst. (Internat.) 18, 481–484 (1965).

    CAS  Google Scholar 

  49. E. J. Charlson and G. Mott, “Dynamic measurement of the piezoelectric and elastic constants of gallium arsenide,” Proc. IEEE 51, 1239 (1963).

    Article  Google Scholar 

  50. T. B. Bateman, H. J. McSkimin, and J. M. Whelan, “Elastic moduli of single-crystal gallium arsenide,” J. Appl. Phys. 30, 544–545 (1959).

    Article  CAS  Google Scholar 

  51. M. Onoe, A. W. Warner, and A. A. Ballman, “Elastic and piezoelectric characteristics of bismuth germanium oxide Bi12GeO20,” IEEE Trans. on Sonics and Ultrasonics SU-14, 165–167 (1967).

    Article  Google Scholar 

  52. P. Egli, “A survey of inorganic piezoelectric materials,” American Minerologist 33, 622–633 (1948).

    CAS  Google Scholar 

  53. A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystals in class (3m),”J.Acoust. Soc. Am. 42, 1223–1231 (1967).

    Article  CAS  Google Scholar 

  54. A. W. Warner and A. A. Ballman, “Low temperature coefficient of frequency in a lithium tantalate resonator,” Proc. IEEE 55, 450 (1967).

    Article  Google Scholar 

  55. T. R. Sliker and D. J. Koneval, “Frequency-temperature behavior of X-cut lithium tantalate resonators”, Proc. IEEE 56, 1402 (1968).

    Article  Google Scholar 

  56. E. Fatuzzo, G. Harbeke, W. J. Merz, R. Nitsche, H. Roelschi, and W. Ruppel, “Ferroelectricity in SbSI,” Phys. Rev. 127, 2036–2037 (1962).

    Article  CAS  Google Scholar 

  57. R. Nitsche, H. Roelschi, and P. Weld, “New ferroelectric V, VI, and VII compounds of the SbSI type,” Appl. Phys. Letters 4, 210–211 (1964).

    Article  CAS  Google Scholar 

  58. D. A. Berlincourt, H. Jaffe, W. J. Merz, and R. Nitsche, “Piezoelectric effect in the ferroelectric range in SbSI,” Appl. Phys. Letters 4, 61–63 (1964).

    Article  Google Scholar 

  59. G. Quentin and J. M. Thuillier, “Piezoelectric properties of tellurium by electromechanical resonance,” Solid State Commun. 2, 115–117 (1964) (in French).

    Article  CAS  Google Scholar 

  60. H. Gobrecht, H. Harnisch, and A. Tausend, “The piezoelectric effect in selenium,” Z. Phys. (Germany) 148, 209–217 (1957).

    CAS  Google Scholar 

  61. B. Jaffe, R. S. Roth, and S. Marzullo, “Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics,”J.Appl. Phys. 25, 809–810 (1954).

    Article  CAS  Google Scholar 

  62. D. A. Berlincourt, C. Cmolik, and H. Jaffe, “Piezoelectric properties of polycrystalline lead titanate zirconate compositions,” Proc. IRE 48, 220–229 (1960).

    Article  CAS  Google Scholar 

  63. D. Schofield and R. F. Brown, “An investigation of some barium titanate compositions for transducer applications,” Canad. J. Phys. 35, 594–607 (1957).

    Article  CAS  Google Scholar 

  64. C. S. Brown, R. C. Kell, R. Taylor, and L. A. Thomas, “Piezoelectric materials,” Proc. Instn Elect. Engrs (GB) 109B, 99–114 (1962).

    Google Scholar 

  65. R. E. Jaeger and L. Egerton, Hot pressing of potassium-sodium niobates,J.Am. Ceram. Soc. 45, 209–213 (1962).

    Article  CAS  Google Scholar 

  66. F. Kulcsar, “Electromechanical properties of lead titanate zirconate ceramics with lead partially replaced by calcium or strontium,”J.Am. Ceram. Soc. 42, 49–51 (1959).

    Article  CAS  Google Scholar 

  67. T. Ikeda, “Studies on (Ba, Pb)(Ti, Zr)O3 system,”J.Phys. Soc. Japan, 168–174 (1959).

    Google Scholar 

  68. B. Jaffe, R. S. Roth and S. Marzullo, “Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: tin oxide and lead titanate-lead hafnate,”J.Res. Nat. Bur. Stand. 55, 239–254 (1955).

    Article  CAS  Google Scholar 

  69. F. Kulcsar, “Electromechanical properties of lead titanate zirconate ceramics modified with certain three- or five-valent additions,”J.Am. Ceram. Soc. 42, 343–349 (1959).

    Article  CAS  Google Scholar 

  70. H. Jaffe, “Properties of ferroelectric ceramics in the lead titanate zirconate system,” Proc. Inst. Elect. Eng. (GB) 109B, Suppl. 22, 351–354 (1961).

    Google Scholar 

  71. R. Gerson and H. Jaffe, “Electrical conductivity in lead titanate zirconate ceramics,”J.Phys. Chem. Solids 24, 979–984 (1963).

    Article  CAS  Google Scholar 

  72. D. Berlincourt, “Behavior of piezoelectric ceramics under various environmental and operation conditions of radiating sonar transducers,” U.S. Navy J. of Underwater Acoust. 15, 266–283 (1965).

    Google Scholar 

  73. H. H. A. Krueger, “Stress sensitivity of piezoelectric ceramics: Pt. II. Heat treatment,”J.Acoust. Soc. Am. 43, 576–582 (1968).

    Article  Google Scholar 

  74. H. H. A. Krueger, Stress sensitivity of piezoelectric ceramics: Pt. I. Sensitivity to compressive stress parallel to the polar axis,J.Acoust. Soc. Am. 42, 636–645 (1967).

    Article  CAS  Google Scholar 

  75. D. Schofield and R. F. Brown, “An investigation of some barium titanate compositions for transducer applications,” Can. J. Phys. 35, 594–607 (1957).

    Article  CAS  Google Scholar 

  76. R. F. Brown, “Effect of two-dimensional mechanical stress on the dielectric properties of ceramic barium titanate and lead zirconate titanate,” Can. J. Phys. 39, 741–753 (1961).

    Article  CAS  Google Scholar 

  77. R. F. Brown and G. W. McMahon, “Material constants of ferroelectric ceramics at high pressure,” Can. J. Phys. 40, 672–674 (1962).

    Article  CAS  Google Scholar 

  78. R. Y. Nishi and R. F. Brown, “Behavior of piezoceramic projector materials under hydrostatic pressure,”J.Acoust. Soc. Am. 36, 1292–1296 (1964).

    Article  Google Scholar 

  79. R. Y. Nishi, “Effects of one-dimensional pressure on the properties of several transducer ceramics,”J.Acoust. Soc. Am. 40, 486–495 (1966).

    Article  Google Scholar 

  80. D. Berlincourt and H. H. A. Krueger, “Domain processes in lead titanate zirconate and barium titanate ceramics,”J.Appl. Phys. 30, 1804–1810 (1959).

    Article  CAS  Google Scholar 

  81. H. H. A. Krueger, “Stress sensitivity of piezoelectric ceramics: Pt. III. Sensitivity to compressive stress perpendicular to the polar axis,” J. Acoust. Soc. Am. 43, 583–591 (1968).

    Article  Google Scholar 

  82. A. W. Warner, J. G. Bergman Jr., D. A. Pinnow, and G. R. Crane, “Piezoelectric and photoelastic properties of lithium iodate,” J.Acoust. Soc. Am. 47, 791–794 (1970).

    Article  CAS  Google Scholar 

  83. S. Haussühl, “Piezoelectric and electric behavior of lithium iodate” (in German), Phys. Stat. Sol 29, K159–161 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

O. E. Mattiat

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berlincourt, D. (1971). Piezoelectric Crystals and Ceramics. In: Mattiat, O.E. (eds) Ultrasonic Transducer Materials. Ultrasonic Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0468-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0468-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0470-9

  • Online ISBN: 978-1-4757-0468-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics