Skip to main content
Log in

Peculiarities of Electric Properties of Various Materials

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Examples of electric properties of various crystalline materials, insulators and semiconductors, liquid crystals, films, and nanostructures are presented. Among crystals, particular attention is paid to piezoelectrics, pyroelectrics, and ferroelectrics, whose dielectric properties depend strongly on the external electric field and temperature. The electro-optic properties of these materials, as well as the photovoltaic effect and photorefraction, are considered. Liquid crystals, whose optical properties depend strongly on applied electric field, are considered separately. The electric properties of materials are widely used in most diverse fields of science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.

Similar content being viewed by others

REFERENCES

  1. B. K. Vainshtein, V. M. Fridkin, and V. L. Indenbom, Modern Crystallography, Vol. 2: Crystal Structure, Ed. by B. K. Vainshtein et al. (Nauka, Moscow, 1979) [in Russian].

  2. https://slide-share.ru/ehlektrichestvo-i-magnetizmlekciya-3-potencial-rabota-ehlektricheskogo-polya-184838

  3. L. A. Shuvalov, A. A. Urusovskaya, I. S. Zheludev, et al. Modern Crystallography, Vol. 4: Physical Properties of Crystals, Ed. by B. K. Vainshtein et al. (Nauka, Moscow, 1981) [in Russian].

  4. I. S. Rez and Yu. M. Poplavko, Insulators: Main Properties and Applications in Electronics (Radio i Svyaz’, Moscow, 1989) [in Russian].

    Google Scholar 

  5. N. Izyumskaya, Alivov, and H. Morkoç, Crit. Rev. Solid State Mater. Sci. 34, 89 (2009). https://doi.org/10.1080/10408430903368401

    Article  ADS  Google Scholar 

  6. R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, Oxford, 2005).

    Google Scholar 

  7. A. I. Sidorov, Photonics Fundamentals: Physical Principles and Methods of Transformation of Optical Signals in Photonic Devices (ITMO, St. Petersburg, 2014) [in Russian].

    Google Scholar 

  8. E. Conwell, Kinetic Properties of Semiconductors in Strong Electric Fields, Ed. by I. B. Levinson and Yu. K. Pozhela (Mir, Moscow, 1970) [in Russian].

  9. L. E. Vorob’ev, S. N. Danilov, E. L. Ivchenko, et al., Kinetic and Optical Phenomena in Strong Electric Fields in Semiconductors and Nanostructures, Ed. by V. I. Il’in and A. Ya. Shik (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  10. I. S. Zheludev, Usp. Fiz. Nauk 88 (2), 253 (1966). https://doi.org/10.3367/UFNr.0088.196602b.0253

    Article  Google Scholar 

  11. A. S. Sonin and A. S. Vasilevskaya, Electro-Optic Crystals (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  12. O. G. Vlokh, Phenomena of Spatial Dispersion in Parametric Crystal Optics (Izd-vo L’vov Gos. Univ., L’vov, 1984) [in Russian].

  13. J. Bohm, E. Chilla, C. Flannery, et al., J. Cryst. Growth 216, 293 (2000). https://doi.org/10.1016/S0022-0248(00)00440-1

    Article  ADS  Google Scholar 

  14. L. I. Glyukman, Piezoelectric Quartz Resonators (Radio i Svyaz’, Moscow, 1981) [in Russian].

    Google Scholar 

  15. N. V. Marchenkov, Candidate’s Dissertation in Physics and Mathematics (Institute of Crystallography, Russian Academy of Sciences, Moscow, 2014).

  16. J. Valasek, Phys. Rev. 15, 537 (1920).

    Google Scholar 

  17. B. M. Vul and I. M. Gol’dman, Dokl. Akad. Nauk SSSR, 46, 154 (1945).

    Google Scholar 

  18. L. D. Landau, Phys. Z. Sowjun. 11, 545 (1937).

    Google Scholar 

  19. V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 15, 739 (1945).

    Google Scholar 

  20. M. V. Klassen-Neklyudova, M. A. Chernysheva, and A. A. Shtenberg, Dokl. Akad. Nauk SSSR, 18, 527 (1948).

    Google Scholar 

  21. V. L. Indenbom and M. A. Chernysheva, Dokl. Akad. Nauk SSSR, 111, 596 (1956).

    Google Scholar 

  22. W. J. Merz, Phys. Rev. 91, 513 (1953). https://doi.org/10.1103/PhysRev.91.513

    Article  ADS  Google Scholar 

  23. V. P. Konstantinova, Izv. Akad. Nauk SSSR, Ser. Fiz. 24, 1324 (1960).

    Google Scholar 

  24. V. A. Yurin, N. V. Belugina, V. A. Meleshina, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 1927 (1971).

    Google Scholar 

  25. I. Ishibashi, Jpn. J. Appl. Phys. 31, 2822 (1992). https://doi.org/10.1143/JJAP.31.2822

    Article  ADS  Google Scholar 

  26. A. Kolmogorov, Izv. Akad. Nauk CCCP. Ser. Mat. 3, 355 (1937).

    Google Scholar 

  27. M. Avrami, J. Chem. Phys. 8, 212 (1940). https://doi.org/10.1063/1.1750631

    Article  ADS  Google Scholar 

  28. F. Iona and D. Shirane, Ferroelectric Crystals (Pergamon, New York, 1962).

    Google Scholar 

  29. G. A. Smolenskii, Physics of Ferroelectric Phenomena: A Handbook (Nauka, Leningrad, 1985) [in Russian].

    Google Scholar 

  30. Physics of Ferroelectrics: a Modern Perspective, Ed. by K. M. Rabe (Springer, Berlin, 2007).

    Google Scholar 

  31. D. V. Sivukhin, General Course of Physics, Vol. 3: Electricity (Nauka, Moscow, 1977) [in Russian].

  32. S. I. Petrenko, G. K. Savchuk, and N. P. Yurkevich, Ferroelectrics and Their Properties (BNTU, Minsk, 2007) [in Russian].

    Google Scholar 

  33. G. A. Smolenskii, V. A. Bokov, V. A. Isupov, et al., Ferroelectrics and Antiferroelectrics (Nauka, Leningrad, 1971) [in Russian].

    Google Scholar 

  34. N. R. Ivanov and L. A. Shuvalov, Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 1148 (1967).

    Google Scholar 

  35. B. Zwicker and P. Scherrer, Helv. Phys. Acta 17, 346 (1944).

    Google Scholar 

  36. N. Barkhausen, Phys. Z., No. 17, 20 (1919).

  37. V. M. Fridkin, Ferroelectrics–Semiconductors (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  38. L. Onsager, Phys. Rev. 65, 117 (1944). https://doi.org/10.1103/PhysRev.65.117

    Article  ADS  MathSciNet  Google Scholar 

  39. A. V. Bune, V. M. Fridkin, and S. Ducharme, Nature 391, 874 (1998). https://doi.org/10.1038/36069

    Article  ADS  Google Scholar 

  40. V. M. Fridkin and S. Ducharme, Ferroelectricity at the Nanoscale: Fundamentals and Applications (Springer, New York, 2014).

    Google Scholar 

  41. V. M. Fridkin and S. Ducharme, Usp. Fiz. Nauk 184 (6), 645 (2014). https://doi.org/10.3367/UFNr.0184.201406d.0645

    Article  Google Scholar 

  42. L. M. Blinov, V. M. Fridkin, S. P. Palto, et al., Usp. Fiz. Nauk 170 (3), 247 (2000). https://doi.org/10.3367/UFNr.0170.200003b.0247

    Article  Google Scholar 

  43. A. Ievlev, K. Verkhovskaya, and V. Fridkin, Ferroelectr. Lett. 33, 147 (2006). https://doi.org/10.1080/07315170601015031

    Article  ADS  Google Scholar 

  44. V. S. Bystrov and V. M. Fridkin, Usp. Fiz. Nauk 190 (11), 1217 (2020). https://doi.org/10.3367/UFNr.2020.09.038841

    Article  Google Scholar 

  45. S. M. Ryvkin, Photoelectric Phenomena in Semiconductors (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  46. S. Y. Yang, J. Seidel, S. J. Byrnes, et al., Nat. Nanotechnol. 5, 143 (2010). https://doi.org/10.1038/nnano.2009.451

    Article  ADS  Google Scholar 

  47. A. A. Grekov, M. A. Malitskaya, V. D. Spitsina, and V. M. Fridkin, Sov. Phys. Crystallogr. 15, 423 (1970).

    Google Scholar 

  48. B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach Sci. Publ., Philadelphia, 1992).

    Google Scholar 

  49. V. M. Fridkin, IEEE Trans. Ultrason. Ferroelectr. Frequency Control 60 (8), 1551 (2013). https://doi.org/10.1109/TUFFC.2013.2734

    Article  Google Scholar 

  50. P. Günter, Ferroelectrics 22, 761 (1978).

    Google Scholar 

  51. W. T. N. Koch, R. Munser, W. Ruppel, and P. Wurfel, Solid State Commun. 17, 847 (1975). https://doi.org/10.1016/0038-1098(75)90735-8

    Article  ADS  Google Scholar 

  52. V. M. Fridkin, T. M. Batirov, A. F. Konstantinova, et al., Ferroelectr. Lett. 44, 27 (1982). https://doi.org/10.1080/00150198208260640

    Article  ADS  Google Scholar 

  53. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific Publishing, Singapore, 2006).

    MATH  Google Scholar 

  54. Photorefractive Materials and Their Applications, Vol. 1, Ed. by P. Gunter and J.-P. Huignard (Springer, New York, 2006). https://doi.org/10.1007/b106782

    Book  Google Scholar 

  55. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  56. T. Volk and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer, 2008).

    Google Scholar 

  57. T. R. Volk, Doctoral Dissertation in Physics and Mathematics (Institute of Crystallography, Russian Academy of Sciences, Moscow, 1995).

  58. K. V. Shalimova, Physics of Semiconductors: A Handbook (Lan’, St. Petersburg, 2010) [in Russian].

  59. L. M. Suslikov, V. Yu. Slivka, and M. P. Lisitsa, Solid-State Optical Filters on Gyrotropic Crystals (Interpres LTD, Kiev, 1998) [in Russian].

    Google Scholar 

  60. L. E. Vorob’ev, V. I. Stafeev, and D. A. Firsov, Fiz. Tekh. Poluprovodn. 18 (3), 513 (1984).

    Google Scholar 

  61. E. Rozensher and B. Vinter, Optoelectronics (Tekhnosfera, Moscow, 2004) [in Russian].

    Google Scholar 

  62. K. Aizu, Phys. Rev. 133, A1584 (1964). https://doi.org/10.1103/PhysRev.133.A1584

    Article  ADS  Google Scholar 

  63. I. S. Zheludev, Kristallografiya 9 (4), 501 (1964).

    Google Scholar 

  64. O. G. Vlokh, Ukr. Fiz. Zh. 15, 759 (1970).

    Google Scholar 

  65. F. I. Fedorov, Theory of Girotropy (Nauka i Tekhnika, Minsk, 1976) [in Russian].

    Google Scholar 

  66. A. V. Shubnikov, Principles of Optical Crystallography (Akad. Nauk SSSR, Moscow, 1958; Consultants Bureau, New York, 1960).

  67. O. G. Vlokh, I. S. Zheludev, and I. M. Klimov, Dokl. Akad. Nauk SSSR, 223 (6), 1391 (1975).

    ADS  Google Scholar 

  68. D. A. Belogurov, T. G. Okroashvili, T. A. Sivokon’, and Yu. V. Shaldin, Fiz. Tverd. Tela 21, 2524 (1979).

    Google Scholar 

  69. M. K. Kostov, N. P. Ivanchev, and E. F. Dudnik, Phys. Status Solidi A 53, K47 (1979). https://doi.org/10.1002/pssa.2210530164

    Article  ADS  Google Scholar 

  70. M. A. Novikov, A. A. Stepanov, and A. A. Khyshov, Pis’ma Zh. Tekh. Fiz. 43 (8), 17 (2017). https://doi.org/10.21883/PJTF.2017.08.44530.16496

    Article  Google Scholar 

  71. D. Adamenko, I. Klymiv, V. M. Duda, et al., Ukr. J. Phys. Opt. 8, 42 (2007). https://doi.org/10.3116/16091833/8/1/42/2007

    Article  Google Scholar 

  72. Q. Zhang, E. Plum, J.-Y. Ou, et al., Adv. Opt. Mater., 2001826 (2020). https://doi.org/10.1002/adom.202001826

  73. F. Reinitzer, Monatsh. Chem. Verwandte Teile Wiss. 9 (1), 421 (1888).

    Google Scholar 

  74. V. Fréedericksz and V. Zolina, Trans. Faraday Soc. 29 (140), 919 (1933). https://doi.org/10.1039/TF9332900919

    Article  Google Scholar 

  75. L. K. Vistin’ and I. G. Chistyakov, Liquid Crystals (Znanie, Moscow, 1975) [in Russian].

  76. A. P. Kapustin, Experimental Studies of Liquid Crystals (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  77. A. P. Kapustin, O. A. Kapustina, Acoustics of Liquid Crystals (Nauka, Moscow, 1986) [in Russian].

  78. V. A. Belyakov, Diffraction Optics of Complex Structured Periodic Media (Springer, New York, 1992).

    Google Scholar 

  79. V. A. Belyakov and A. S. Sonin, Optics of Cholesteric Liquid Crystals (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  80. S. A. Pikin and L. M. Blinov, Liquid Crystals (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  81. L. M. Blinov, Liquid Crystals: Structure and Properties (Librokom, Moscow, 2013) [in Russian].

    Google Scholar 

  82. I. V. Simdyankin, Candidate’s Dissertation in Physics and Mathematics (Institute of Crystallography, Russian Academy of Sciences, Moscow, 2020).

  83. A. R. Geivandov, M. I. Barnik, V. S. Palto, et al., Crystallogr. Rep. 63 (6), 971 (2018).

    ADS  Google Scholar 

  84. S. P. Palto, L. M. Blinov, M. I. Barnik, et al., Crystallogr. Rep. 56 (4), 622 (2011).

    ADS  Google Scholar 

  85. I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, Pis’ma Zh. Eksp. Teor. Fiz. 32, 27 (1980).

    Google Scholar 

  86. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998). https://doi.org/10.1364/OL.23.001707

    Article  ADS  Google Scholar 

  87. Liquid Crystal Microlasers, Ed. by L. M. Blinov and R. Bartolino (Transworld Research Network, 2010).

    Google Scholar 

  88. S. P. Palto, Usp. Fiz. Nauk 175 (7), 784 (2005). https://doi.org/10.3367/UFNr.0175.200507i.0784

    Article  Google Scholar 

  89. L. M. Blinov, JETP Lett. 90 (3), 166 (2009).

    ADS  Google Scholar 

  90. M. I. Barnik, L. M. Blinov, V. V. Lazarev, et al., J. Appl. Phys. 103, 123113 (2008). https://doi.org/10.1063/1.2948937

  91. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2014).

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Golovina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fridkin, V.M., Golovina, T.G., Konstantinova, A.F. et al. Peculiarities of Electric Properties of Various Materials. Crystallogr. Rep. 67, 494–520 (2022). https://doi.org/10.1134/S1063774522040083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522040083

Navigation