Skip to main content

The Contribution of Basal Forebrain to Limbic — Motor Integration and the Mediation of Motivation to Action

  • Chapter
The Basal Forebrain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 295))

Abstract

A major approach of our laboratory has been the use of electrophysiological recording techniques to investigate the effects on the electrical activity of neurons of the basal forebrain of electrical stimulation of the amygdala and hippocampus. As shown in Fig. 1, highly reliable electrophysiological responses to inputs from these two prominent limbic structures are excitation of accumbens neurons and inhibition of subpallidal neurons. Since the ventral striatum receives strong mesolimbic dopamine projections we have also investigated the effects on these electrophysiological responses of dopamine, either applied exogenously to accumbens neurons by micro-iontophoresis, or released endogenously from electrical stimulation of the ventral tegmental area of the midbrain. Dopamine has been shown to modulate the excitatory responses of accumbens neurons to stimulation of the amygdala and hippocampus and, in turn, to influence the electrophysiological responses of subpallidal neurons. The functional implications for limbic-motor integration of the interaction of dopamine inputs to the accumbens with inputs from amygdala and hippocampus have been investigated in complementary behavioral experiments. Before considering the results of our research in more detail some background is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alheid, G.F. and Heimer, L., 1988, New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid and corticopetal components of substantia innominata. Neurosci., 27: 1–39.

    Article  CAS  Google Scholar 

  • Austin, M.C. and Kalivas, P.W., 1987, Modulation of GABAergic function on the substantia innominata by the mesolimbic dopamine system. Proc. Soc. Neurosci., 13: 958, Abstr. 264.16.

    Google Scholar 

  • Austin, M.C. and Kalivas, P.W., 1990, Enkephalinergic and GABAergic modulation of motor activity in the ventral pallidum. J. Pharmacol. Exp. Therap. 252: 1370–1377.

    CAS  Google Scholar 

  • Beckstead, R.M., Domesick, V. B. and Nauta, W.J.H., 1979, Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res., 175: 191–217.

    Article  PubMed  CAS  Google Scholar 

  • Bjursten, L.-M., Norrsell, K., and Norrsell, U., 1976, Behavioral repertory of cats without cerebral cortex from infancy. Exp. Brain Res. 25: 115–130.

    Article  PubMed  CAS  Google Scholar 

  • Blaker, W.D., 1985, GABAergic control of the cholinergic projections to the frontal cortex is not tonic. Brain Res., 325: 389–390.

    Article  PubMed  CAS  Google Scholar 

  • Boldry, R.C. and Uretsky, N.J., 1988, The importance of dopaminergic neurotransmission in the hypermotility response produced by the administration of N-methyl-D-aspartic acid into the nucleus accumbens. Neuropharmacol., 27: 569–577.

    Article  CAS  Google Scholar 

  • Brashear, H.R., Zaborszky, L. and Heimer, L., 1986, Distribution of GABAergic and cholinergic neurons in the rat diagonal band. Neurosci., 17: 439–451.

    Article  CAS  Google Scholar 

  • Brudzynski, S.M. and Mogenson, G.J. 1985, Assocation of the mesencephalic locomotor region with locomotor region with locomotor activity induced by injections of amphetamine into the nucleus accumbens. Brain Res., 334: 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Brudzynski, S.M. and Mogenson, G.J. 1986, Inhibition of amphetamine-induced locomotor activity by injection of carbachol into the anterior hypothalamic/preoptic area: pharmacological and electrophysiological studies in the rat. Brain Res. 376: 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Cador, M., Robbins, T.W. and Everitt, B.J. 1989, Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neurosci., 30: 77–86.

    Article  CAS  Google Scholar 

  • Christie, M.J., James, L.B. and Beart, P.M., 1985, An excitatory amino acid projection from the medial prefrontal cortex to the anterior part of nucleus accumbens in the rat. J. Neurochem., 45: 477–482.

    Article  PubMed  CAS  Google Scholar 

  • Christie, M.J., Summers, R.J., Stephenson, J.A., Cook, C.J. and Beart, P.M., 1987, Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D-[3H] aspartate and [3H]GABA. Neurosci., 22: 425–439.

    Article  CAS  Google Scholar 

  • Coyle, J.T., Price, D.L. and DeLong, M.R., 1983, Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science, 219: 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom, A. and Fuxe, K., 1964, Evidence for the existence of monoamines in the central nervous system. I. Determination of monoamines in the cell bodies of brainstem neurones. Acta Physiol. Scand. Suppl., 232: 1–25.

    Google Scholar 

  • Divac, I., 1975, Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb. Review of some functional correlates. Brain Res., 93:385–398.

    Article  PubMed  CAS  Google Scholar 

  • Fuster, J.M., 1989, “The Frontal Cortex”, 2nd Edition, Raven Press, New York.

    Google Scholar 

  • Garcia-Rill, E., Skinner, R.D. and Fitzgerald, J.A., 1983, Activity in the mesencephalic locomotor region during locomotion. Exp. Neurol. 82: 609–622.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rill, E., 1986, The basal ganglia and the locomotor regions. Brain Res. Rev. 11:47–63.

    Article  Google Scholar 

  • Grillner, S., 1985, Neurobiological bases of rhythmic acts in vertebrates. Science, 228: 143–149.

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen, H.J., 1988, Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neurosci., 24: 379–431.

    Article  CAS  Google Scholar 

  • Groenewegen, H.J., Vermeulen-Van der Zee, E., te Kortschot, A. and Witter, M.P., 1987, Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoglutinin. Neurosci., 23: 103–120.

    Article  CAS  Google Scholar 

  • Grove, E.A., 1988a, Neural associations of the substantia innominata in the rat: afferent connections. J.Comp.Neurol . 277: 315–346.

    Article  PubMed  CAS  Google Scholar 

  • Grove , E.A., 1988b, Efferent connections of the substantia innominata in the rat. J.Comp.Neurol. 277: 347–164.

    Article  PubMed  CAS  Google Scholar 

  • Haber, S.N., 1987, Anatomical relationship between the basal ganglia and the basal nucleus of Meynert in human and monkey forebrain. Proc. Natl. Acad. Sei. USA, 84: 1408–1412.

    Article  CAS  Google Scholar 

  • Haber, S.N. and Nauta, W.J.H., 1983, Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry. Neurosci., 9: 245–260.

    Article  CAS  Google Scholar 

  • Haber, S.N., Groenewegen, H.J., Grove, E.A. and Nauta, W.J.H., 1985, Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway. J.Comp.Neurol., 235: 322–335.

    Article  PubMed  CAS  Google Scholar 

  • Heimer, L. and Wilson, R.D., 1975, The subsortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: “Golgi Centennial Symposium”, M. Santini, ed.. Raven Press, N. Y., pp.177–193.

    Google Scholar 

  • Heimer, L., Switzer, R.D. and Van Hoesen, G.W., 1982, Ventral striatum and ventral pallidum: Components of the motor system? Trends in Neurosci., 5: 83–87.

    Article  Google Scholar 

  • Hess, W.R., 1954, “Das Zwischenhirn” 2nd Ed. Schwabe, Basel.

    Google Scholar 

  • Hill, J.M., 1985, Iron concentration reduced in ventral pallidum, globus pallidus, and substantia nigra by GABA-transaminase inhibitor, Gamma-vinyl GABA. BrainRes., 342: 18–25.

    Article  PubMed  CAS  Google Scholar 

  • Hill, J.M. and Switzer, R.C., 1984, The regional distribution and cellular localization of iron in the rat brain. Neurosci., 11: 595–603.

    Article  CAS  Google Scholar 

  • Isaacson, R.L., 1982, “Limbic System” 2nd Ed., Plenum, New York.

    Google Scholar 

  • Jones, D.L. and Mogenson, G.J., 1980a, Nucleus accumbens to globus GABA projection: electrophysiological and iontophoretic investigations. Brain Res., 188: 93–105.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D.L. and Mogenson, G.J., 1980b, Nucleus accumbens to globus pallidus GABA projection subserving ambulatory activity. Am. J. Physiol., 238: 65–69.

    Google Scholar 

  • Jones, D.L., Mogenson, G.J. and Wu, M., 1981, Injections of dopaminergic, cholinergic, serotoninergic and GABAergic drugs into the nucleus accumbens: effects on locomotor activity in the rat. Neuropharmacol., 20: 29–37.

    Article  CAS  Google Scholar 

  • Kalivas, P.W., 1990, This book.

    Google Scholar 

  • Kelley, A.E. and Domesick, V.B., 1982, The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde and retrograde horseradish peroxidase study. Neurosci., 7: 2321–2335.

    Article  CAS  Google Scholar 

  • Kelley, A.E., Domesick, V.B. and Nauta, W.J.H., 1982, The amygdalostriatal projection in the rat— an anatomical study by anterograde and retrograde tracing methods. Neurosci., 7: 615–630.

    Article  CAS  Google Scholar 

  • Kelley, A.E., and Stinus, L., 1985, Disappearance of hoarding behaviour after 6-hydroxydopamine lesions of the mesolimbic dopamine neurones and its reinstatement with L-dopa. Behav. Neurosci., 99: 531–545.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, B., 1974, Prefrontal lesions alter eating and hoarding behaviour in rats. Physiol. Behav., 12: 507–511.

    Article  PubMed  CAS  Google Scholar 

  • Koob, G.F., 1990, This book.

    Google Scholar 

  • Krettek, J.E. and Price, J.L., 1978, Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J.Comp.Neurol., 178: 225–254.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, J., Nagy, J.I., Atmadja, S. and Fibiger, H.C., 1980, The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex of the rat. Neurosci., 5: 1161–1174.

    Article  CAS  Google Scholar 

  • Markowitsch, J.J., 1982, Thalamic mediodorsal nucleus and memory: a critical evaluation of studies in animals and man. Neurosci. Biobehav. Rev., 6: 351–381.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M.M., Mufson, E.J., Wainer, B.H. and Levey, A.I., 1983, Central cholinergic pathways in the rat, an overview based on an alternative nomenclature (Chl-Ch6). Neuroscience, 10: 1185–1201.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson, G.J., 1987, Limbic-motor integration. Prog. Psychobiol. Physiol. Psychol., 12: 117–170.

    Google Scholar 

  • Mogenson, G.J. and Nielsen, M., 1983, Evidence that an accumbens to subpallidal GABAergic projection contributes to locomotor activity. Brain Res. Bull., 11: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson, G.J. and Nielsen, M., 1984a, A study of the contribution of hippocampal-accumbens-subpallidal projections to locomotor activity. Behav. Neural. Biol., 42: 38–51.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson, G.J. and Nielsen, M., 1984b, Neurochemical evidence to suggest that the nucleus accumbens and subpallidal regions contribute to exploratory locomotion. Behav. Neural Biol., 42: 52–60.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson, G.J. and Wu, M., 1986, Subpallidal projections to the mesencephalic locomotor region investigated with a combination of behavioral and electrophysiological recording techniques. Brain Res. Bull., 16: 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson, G.J. and Wu, M., 1988a, Differential effects on locomotor activity of injections of procaine into mediodorsal thalamus and pedun-culopontine nucleus. Brain Res. Bull., 20: 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson, G.J. and Wu, M., 1988, Disruption of food hoarding by injections of procaine into mediodorsal thalamus, GABA into subpallidal region and haloperidol into the accumbens. Brain Res. Bull., 20: 247–251.

    Article  PubMed  Google Scholar 

  • Mogenson, G.J. and Yim, C.Y., 1981, Electrophysiological and neurophar-macological-behavioral studies of the nucleus accumbens: implications for its role as a limbic-motor interface. In “The Neurobiology of the Nucleus Accumbens”, R. B. Chronister and J. F. DeFrance, eds., Haer Institute, New Brunswick, pp. 210–229.

    Google Scholar 

  • Mogenson, G.J., Jones, D.L. and Yim, C.Y., 1980, From motivation to action: Functional interface between the limbic system and the motor system. Prog. Neurobiol., 14: 69–97.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson, G.J., Swanson, L.W. and Wu, M., 1983, Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat. J. Neurosci., 3: 189–202.

    PubMed  CAS  Google Scholar 

  • Mogenson, G.J., Wu, M. and Manchanda, S.K., 1979, Locomotor activity initiated by microinfusions of Picrotoxin into the ventral tegmental area. Brain Res., 161: 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson, G.J., Yang, C.R. and Yim, C.Y., 1988, Influence of dopamine on limbic inputs to the nucleus accumbens. Ann. N. Y. Acad.Sci., 537: 86–100.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson, G.J., Ciriello, J., Garland, J. and Wu, M., 1987, Ventral pallidum projections to mediodorsal nucleus of the thalamus: an anatomical and electrophysiological investigation in the rat. Brain Res., 404: 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Moon-Edley, S. and Graybiel, A.M., 1983, The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus pars compacta. J.Comp.Neurol., 217: 187–215.

    Article  Google Scholar 

  • Nauta, W.J.H., Smith, G.P., Faull, R.L.M. and Domesick, V.B., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neurosci., 3: 385–401.

    Article  CAS  Google Scholar 

  • O’Keefe, J. and Nadel, L., 1978, “The Hippocampus as a Cognitive Map” Clarendon Press, Oxford.

    Google Scholar 

  • Onteniente, B., Simon, H., Taghzouti, K., Geffard, M., Le Moal, M. and Galas, A., 1987, Dopamine-GABA interactions in the nucleus accumbens and lateral septum of the rat. Brain Res., 421: 391–396.

    Article  PubMed  CAS  Google Scholar 

  • Patel, S. and Slater, P., 1988, Effects of GABA compounds injected into the subpallidal regions of rat brain on nucleus accumbens evoked hyperactivity. Behav. Neurosci., 102: 596–600.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G. and Watson, C., 1986, “The Rat Brain in Stereotaxic Coordinates”, 2nd edition, Academic Press, N. Y.

    Google Scholar 

  • Pickel, V.M., Towle, A.C., Joh, T.H., and Chan, J., 1988, GABA in the medial rat nucleus accumbens: ultrastruetural localization in neurones receiving monosynaptic input from catecholaminergic afferents. J.Comp.Neurol., 272: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Pijnenberg, A.J.J, and van Rossum, J., 1973, Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J.Pharm.Pharmacol., 25: 1003–1005.

    Article  Google Scholar 

  • Richardson, R.T. and DeLong, M.R., 1988, A reappraisal of the functions of the nucleus basalis of Meynert. Trends in Neurosci., 11: 265–267.

    Article  Google Scholar 

  • Schacter, G.B., Yang, C.R., Innis, N.K. and Mogenson, G.J., 1989, The role of the hippocampal-nucleus accumbens pathway in radial-arm maze performance. Brain Res., 494: 339–349.

    Article  PubMed  CAS  Google Scholar 

  • Scheel-Kruger, J., 1986, Dopamine-GABA interactions: evidence that GABA transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system. Acta Neurol. Scanda Suppl., 107: 1–54.

    CAS  Google Scholar 

  • Semba, K. and Fibiger, H.C., 1988, Time of origin of cholinergic neurons in the rat basal forebrain. J.Comp.Neurol., 269: 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Shefchyk, D.J., Jell, R.M. and Jordan, L.M., 1984, Reversible cooling of the brainstem reveals areas required for mesencephalic locomotor region evoked treadmill locomotion. Exp. Brain Res., 56: 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Shik, M.L., Severin, F.V. and Orlovsky, G.N., 1966, Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11: 756–765.

    Google Scholar 

  • Skinner, R.D. and Garcia-Rill E., 1984, The mesencephalic locomotor region (MLR) in the rat. Brain Res. 323: 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, T. and Mizuno, N., 1987, Neurotensin in projection neurons of the striatum and nucleus accumbens, with reference to co-existence with enkephalin and GABA: immunohistochemical study in the cat. J.Comp.Neurol., 257: 383–395.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W., Mogenson, G.J., Gerfen, C.R. and Robinson, P., 1984, Evidence for a projection from the lateral preoptic area and substantia innominata to the “mesencephalic locomotor region” in the rat. Brain Res., 295: 161–178.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow, N.R. and Koob, G.F., 1987a, Dopamine, schizophrenia, mania, and depression: toward a unified hypothesis of cortical-striato-pallido-thalamic function. Brain Behav.Sci., 10: 197–245.

    Article  Google Scholar 

  • Swerdlow, N.R. and Koob, G.F., 1987b, Lesions of the dorsomedial nucleus of the thalamus, medial prefrontal cortex and pedunculopontine nucleus: effects on locomotor activity mediated by nucleus accumbens-ventral pallidal circuitry. Brain Res., 412: 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow, N.R., Swanson, L.W. and Koob, G.F., 1984, Electrolytic lesions of the substantia innominata and lateral preoptic area attenuate the ‘supersensitive’ locomotor response to apomorphine resulting from denervation of the nucleus accumbens. Brain Res. 306: 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Switzer, R.C., Hill, J. and Heimer, L., 1982, The globus pallidus and its rostroventral extension into the olfactory tubercle of the rat: a cyto- and chemoarchitectural study. Neurosci., 7: 1891–1904.

    Article  CAS  Google Scholar 

  • Totterdell, S. and Smith, A.D., 1989, Convergence of hippocampal and dopaminergic input onto identified neurons in the nucleus accumbens of the rat. J. Chem. Neuroanat., 2: 285–298.

    PubMed  CAS  Google Scholar 

  • Uchimura, N. and North, R.A., 1990, Muscarine reduces inwardly rectifying potassium conductance in rat nucleus accumbens neurones. J. Physiol. (London) 422: 369–380.

    CAS  Google Scholar 

  • Vanderwolf, C.H., 1971, Limbic-diencephalic mechanisms of voluntary movement. Psychol. Rev., 78: 83–113.

    Article  PubMed  CAS  Google Scholar 

  • Victor, M., Adams, R.D. and Collins, G.H., 1971, The Wernicke-Korsakoff Syndrome. Oxford, Blackwell, 1971.

    Google Scholar 

  • Vives, F. and Mogenson, G.J., 1985, Electrophysiological evidence that mediodorsal nucleus of the thalamus is a relay of the pathway between the ventral pallidum and the medial prefrontal cortex in the rat. Brain Res., 344: 329–337.

    Article  PubMed  CAS  Google Scholar 

  • Vives, F. and Mogenson, G.J., 1986, Electrophysiological study of the effects of Di and D2 dopamine antagonists on the interaction of converging inputs from the sensory-motor cortex and substantia nigra neurons in the rat. Neurosci., 17: 349–359.

    Article  CAS  Google Scholar 

  • Walaas, I. and Fonnum, F., 1979, The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions. Brain Res., 177: 325–336.

    Article  PubMed  CAS  Google Scholar 

  • Wenk, G.J., 1984, Pharmacological manipulations of the substantia innominata — cortico cholinergic pathway. Neurosci. Lett., 51: 99–103.

    Article  PubMed  CAS  Google Scholar 

  • White, F.J. and Wang, R.X., 1985, Electrophysiological evidence for the existence of both D1 and D2 dopamine receptors in the rat nucleus accumbens. J. Neurosci., 6: 274–280.

    Google Scholar 

  • Wood, P.L., 1986, Pharmacological evaluation of GABAergic and glutamatergic inputs to the nucleus basalis — cortico and the septal — hippocampal cholinergic projections. Canadn. J. Physiol. Pharmacol., 64: 325–328.

    Article  CAS  Google Scholar 

  • Wood, P.L. and Richard, J., 1982, GABAergic regulation of the substantia innominata — cortico cholinergic pathway. Neuropharmacol., 21: 969–972.

    Article  CAS  Google Scholar 

  • Yang, C.R. and Mogenson, G.J., 1984, Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by mesolimbic dopaminergic system. Brain Res., 324: 69–84.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C.R. and Mogenson, G.J., 1985, An electrophysiological study of the neural projections from the hippocampus to the ventral pallidum and the subpallidal areas by way of the nucleus accumbens. Neurosci., 15: 1015–1024.

    Article  CAS  Google Scholar 

  • Yang, C.R. and Mogenson, G.J., 1986, Dopamine enhances terminal excitability of hippocampal-accumbens neurones via D2 receptor: role of dopamine in presynaptic inhibition. J. Neurosci., 6: 2470–2478.

    PubMed  CAS  Google Scholar 

  • Yang, C.R. and Mogenson, G.J., 1987, Hippocampal signal transmission to the pedunculopontine nucleus and its regulation by dopamine D2 receptors in the nucleus accumbens: an electrophysiological and behavioral study. Neurosci., 23: 1041–1055.

    Article  CAS  Google Scholar 

  • Yang, C.R. and Mogenson, G.J., 1989, Ventral pallidal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Res., 489: 237–246.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C.R. and Mogenson, G.J., 1990, Dopaminergic modulation of cholinergic responses in rat medial prefrontal cortex. Brain Res., (in press).

    Google Scholar 

  • Yim, C.Y., 1990, This book.

    Google Scholar 

  • Yim, C.Y. and Mogenson, G.J., 1982, Responses of nucleus accumbens neurones to amygdala stimulation and its modification by dopamine. Brain Res., 239: 401–415.

    Article  PubMed  CAS  Google Scholar 

  • Yim, C.Y. and Mogenson, G.J., 1989, Low doses of accumbens dopamine modulate amygdala suppression of spontaneous exploratory activity in rats. Brain Res., 477: 202–210.

    Article  PubMed  CAS  Google Scholar 

  • Young, W.S., Alheid, G.F. and Heimer, L., 1984, The ventral pallidal projection to the mediodorsal thalamus: a study with fluorescent retrograde tracers and immunohistofluorescence. J. Neurosci. 4:1626–1638.

    PubMed  Google Scholar 

  • Zaborszky, L., Leranth, C. and Heimer, L., 1984, Ultrastruetural evidenceof amygdalofugal axons terminating on cholinergic cells of the rostral forebrain. Neurosci. Lett., 52: 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky, L., Heimer, L., Eckenstein, F. and Leranth, C., 1986, GABAergic input to cholinergic basal forebrain neurones: an untrastructural study using retrograde tracing of HRP and double Immunolabelling. J.Comp.Neurol., 250: 282–295.

    Article  PubMed  CAS  Google Scholar 

  • Zahm, D.S. and Heimer, L., 1988, The ventral striatopallidal parts of the basal ganglia in the rat: I. Neurochemical compartmentation as reflected by the distributions of neurotensin and substance P immunoreactivity. J.Comp.Neurol., 272: 516–535.

    Article  PubMed  CAS  Google Scholar 

  • Zahm, D.S., Zaborsky, L., Alones, V.E. and Heimer, L., 1985, Evidence for the coexistence of glutamate decarboxylase and met-enkephalin immunoreactivities in axon terminals of rat ventral pallidum. Brain Res., 325: 317–321.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Mogenson, G.J., Yang, C.R. (1991). The Contribution of Basal Forebrain to Limbic — Motor Integration and the Mediation of Motivation to Action. In: Napier, T.C., Kalivas, P.W., Hanin, I. (eds) The Basal Forebrain. Advances in Experimental Medicine and Biology, vol 295. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0145-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0145-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0147-0

  • Online ISBN: 978-1-4757-0145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics