Skip to main content

The Nuclear SU 3 Model

  • Chapter
Advances in Nuclear Physics

Abstract

The shell model, despite a somewhat checkered career, has emerged as a useful approximation to the many-particle description of the atomic nucleus (E57b, S63). In principle it is perhaps the closest of all nuclear models to being unified, i.e., to describing all properties of all states of all nuclei. Unfortunately, even with the restriction to a shell structure, the number of possible states is often very large and there are few nuclei whose properties can be described without a prohibitive amount of computational labor. Thus several submodels of the shell model have been constructed to reduce the number of states and hence also the computational difficulty. These submodels describe more of the physical structure of states in terms of well-defined quantum numbers. It is as a submodel of the shell model that we can classify the “SU 3 model.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weyl, H., “Group Theory and Quantum Mechanics,” Dover Publications, New York, 1928.

    Google Scholar 

  2. Feenberg, E., and M. Phillips, Phys. Rev. 51:597 (1937).

    Article  ADS  MATH  Google Scholar 

  3. Wigner, E. P., Phys. Rev. 51:106 (1937).

    Article  ADS  MATH  Google Scholar 

  4. Jauch, J. M., and E. L. Hill, Phys. Rev. 57:641 (1940).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Racah, G., Phys. Rev. 62:438 (1942).

    Article  ADS  Google Scholar 

  6. Jahn, H. A., Proc. Roy. Soc. 205:192 (1951).

    Article  ADS  MATH  Google Scholar 

  7. Jahn, H. A., and H. van Wieringen, Proc. Roy. Soc. A209:502 (1951).

    Article  ADS  Google Scholar 

  8. Racah, G., “Lecture Notes on Group Theory in Spectroscopy,” Princeton University, 1951.

    Google Scholar 

  9. Hill, D. L., and J. A. Wheeler, Phys. Rev. 89:1102 (1953).

    Article  ADS  MATH  Google Scholar 

  10. Elliott, J. P., and B. H. Flowers, Proc. Roy. Soc. A229:536 (1955).

    Article  ADS  Google Scholar 

  11. Elliott, J. P., and T. H. R. Skyrme, Proc. Roy. Soc. A232:561 (1955).

    Article  ADS  Google Scholar 

  12. Nilsson, S. G., Dan. Mat. Fys. Medd. 29:16 (1955).

    Google Scholar 

  13. Blin-Stoyle, R. J., Rev. Mod. Phys. 28:75 (1956).

    Article  ADS  Google Scholar 

  14. Kurath, D., Phys. Rev. 101:216 (1956).

    Article  ADS  Google Scholar 

  15. Edmonds, A. R., “Angular Momentum in Quantum Mechanics,” Princeton University Press, Princeton, N. J., 1957.

    MATH  Google Scholar 

  16. Elliott, J. P., and B. H. Flowers, Proc. Roy. Soc. A242:57 (1957).

    Article  ADS  Google Scholar 

  17. Elliott, J. P., and A. M. Lane, in “Encyclopedia of Physics” S. Flügge, ed., Vol. 39. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.

    Google Scholar 

  18. Hofstadter, R., Ann. Rev. Nucl. Sci. 7:231 (1957).

    Article  ADS  Google Scholar 

  19. Moszkowski, S. A., in “Encyclopedia of Physics,” S. Flügge, ed. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.

    Google Scholar 

  20. Peierls, R. E., and J. Yoccoz, Proc. Phys. Soc. A70:381 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  21. Elliott, J. P., Proc. Roy. Soc. A245:128 and 562 (1958).

    Article  ADS  Google Scholar 

  22. Moskowski, S., Phys. Rev. 110:403 (1958).

    Article  ADS  Google Scholar 

  23. “Nuclear Reaction 1,” P. M. Endt and M. Demeur, eds. North Holland Publishing Co., Amsterdam, 1959.

    Google Scholar 

  24. Rotenberg, M., R. Bivins, N. Metropolis, and J. K. Wooten, Jr., “The 3-j and 6-j Symbols,” The Technology Press, Massachusetts Institute of Technology, Cambridge, Mass, 1959.

    Google Scholar 

  25. Bargman, V., and M. Moshinsky, Nucl. Phys. 18:697 (1960).

    Article  Google Scholar 

  26. Bayman, B. F., “Groups and Their Application to Spectroscopy,” Lectures delivered in 1957 at NORDITA. Nordisk Institute for Teoretisk Atom Fysik, Copenhagen, 1960.

    Google Scholar 

  27. Bohr, A., and B. R. Mottelson, in “Nuclear Spectroscopy B,” Fay Ajzenberg-Selove, ed. Academic Press, New York-London VI, C, 1960.

    Google Scholar 

  28. Gove, H. E., Proc. Internl. Conf. Nuclear Structure, Kingston: D. A. Bromley and E. W. Vogt, eds. University of Toronto Press, p. 438, 1960.

    Google Scholar 

  29. Lawson, R. D., in “Nuclear Spectroscopy B,” Fay Ajzenberg-Selove, ed. Academic Press, New York-London VI, A, 1960.

    Google Scholar 

  30. Newton, T. D., “Energy Levels of a Completely Anistropic Oscillator,” Chalk River Nucl. Labs. Rept., CRT-886, 1960.

    Google Scholar 

  31. Wilkinson, D. H., in “Nuclear Spectroscopy B,” Fay Ajzenberg-Selove, ed. Academic Press, New York-London, V.F., 1960.

    Google Scholar 

  32. Bargman, V., and M. Moshinsky, Nucl. Phys. 23:177 (1961).

    Article  Google Scholar 

  33. Harvey, M., Ph.D. Thesis, Southampton, 1961.

    Google Scholar 

  34. Hellwege, K. H., ed., “Energy Levels in Light Nuclei,” Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961.

    Google Scholar 

  35. Koltan, D. S., Phys. Rev. 124:1162 (1961).

    Article  ADS  Google Scholar 

  36. Litherland, A. E., J. A. Kuehner, H. E. Gove, M. A. Clarke, and E. Almqvist, Phys. Rev. Letters 7:98 (1961).

    Article  ADS  Google Scholar 

  37. Ne’eman, Y., Nucl. Phys. 26:222 (1961).

    Article  MathSciNet  Google Scholar 

  38. Elliott, J. P., “Escuela Latino Americana De Fisca.” Universidad de Mexico, 1962.

    Google Scholar 

  39. Gell-Mann, M., Phys. Rev. 125:1067 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Moshinsky, M., “Escuela Latino Americana De Fisca.” Universidad de Mexico, 1962.

    Google Scholar 

  41. Willey, R. S., Phys. Rev. 126:1127 (1962).

    Article  ADS  MATH  Google Scholar 

  42. Bannerjee, M. K., and C. Levinson, Phys. Rev. 130:1036 (1963).

    Article  ADS  Google Scholar 

  43. Bannerjee, M. K., C. Levinson, and S. Meshkov, Phys. Rev. 130:1064 (1963).

    Article  ADS  Google Scholar 

  44. Brink, D. M., Nucl. Phys. 40:593 (1963).

    Article  MATH  Google Scholar 

  45. Brink, D. M., and G. F. Nash, Nucl. Phys. 40:608 (1963).

    Article  Google Scholar 

  46. Elliott, J. P., “Selected Topics in Nuclear Theory.” International Atomic Energy Agency, Vienna, 1963.

    Google Scholar 

  47. Elliott, J. P., and M. Harvey, Proc. Roy. Soc. A272:557 (1963).

    Article  ADS  Google Scholar 

  48. Litherland, A. E., M. A. Clark, and C. Broude, Phys. Rev. Letters 3:204 (1963).

    Article  Google Scholar 

  49. Harvey, M., Phys. Rev. Letters 3:209 (1963).

    Article  Google Scholar 

  50. Nash, G. F., Nuovo Cimento 30:1064 (1963).

    Article  Google Scholar 

  51. de Shalit, A., and I. Talmi, “Nuclear Shell Theory,” Academic Press, New York-London, 1963.

    Google Scholar 

  52. Bouten, M. C., J. P. Elliott, and J. A. Pullen, Comptes Rendus du Congrès International de Physique Nucléaire, pré Madame P. Gugenberger, Centre National de la Recherche Scientifique, Paris, 1964, Vol. II, p. 413. Also preprint, 1966.

    Google Scholar 

  53. Carter, E. B., G. E. Mitchell, and R. H. Davies, Phys. Rev. 133B:1421 and 1434 (1964).

    Article  ADS  Google Scholar 

  54. Engeland, T., and A. Kallio, Nucl. Phys. 59:211 (1964).

    Article  Google Scholar 

  55. Guiasu, I., and M. Micu, Rev. Roum. Physics 9:911 (1964).

    MATH  Google Scholar 

  56. Hamermesh, M., “Group Theory and its Application to Physical Problems,” Addison-Wesley, Reading, Mass., 1964.

    Google Scholar 

  57. Harvey, M., Nucl. Phys. 52:542 (1964).

    Article  Google Scholar 

  58. Harvey, M., Symp. Structure of Low-Medium Mass Nuclei, Kansas, 1964.

    Google Scholar 

  59. Hecht, K. T., in “Selected Topics in Nuclear Spectroscopy,” B. J. Verhaar, ed. North-Holland and John Wiley, 1964.

    Google Scholar 

  60. Horie, H., J. Phys. Soc. Japan 19:1783 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  61. Inoue, T., T. Sebe, H. Hagiwara, and A. Arima, Nucl. Phys. 59:1 (1964).

    Article  Google Scholar 

  62. Kuehner, J. A., and J. D. Pearson, Can. J. Phys. 42:477 (1964).

    Article  ADS  Google Scholar 

  63. McKellar, B. H. J., Phys. Rev. 134:B1190 (1964).

    Article  ADS  Google Scholar 

  64. Middleton, R., and D. J. Pullen, Nucl Phys. 51:63 (1964).

    Article  Google Scholar 

  65. Nash, G. F., Nuovo Cimento 32:727 (1964).

    Article  Google Scholar 

  66. Pandya, S. P., and I. M. Green, Nucl. Phys. 57:658 (1964).

    Article  Google Scholar 

  67. Svenne, J. P., and M. Harvey, unpublished.

    Google Scholar 

  68. Tinkham, M., “Group Theory and Quantum Mechanics,” McGraw-Hill Book Co., New York, 1964.

    MATH  Google Scholar 

  69. Arima, A., M. Nomura, and H. Kawarada, Phys. Rev. Letters 19:400 (1965).

    Article  Google Scholar 

  70. Bassichis, W. H., and G. Ripka, Phys. Rev. Letters 15:320 (1965).

    Article  Google Scholar 

  71. Block, C., and V. Gillet, Phys. Rev. Letters 16:62 (1965) and 18:58 (1965).

    Article  Google Scholar 

  72. Engeland, T., Nucl. Phys. 72:68 (1965).

    Article  Google Scholar 

  73. Evans, H. C., M. A. Eswaren, H. E. Gove, A. E. Litherland, and C. Broude, Can. J. Phys. 43:82 (1965).

    Article  ADS  Google Scholar 

  74. Flores, J., E. Chacon, P. A. Mello, and M. de Llano, Nucl. Phys. 72:352 (1965).

    Article  Google Scholar 

  75. Hecht, K. T., Nucl. Phys. 62:1 (1965).

    Article  MathSciNet  Google Scholar 

  76. Kelson, I., Phys. Rev. Letters 16:143 (1965).

    Article  Google Scholar 

  77. de Llano, M., P. A. Mello, E. Chacon, and J. Flores, Nucl. Phys. 72:379 (1965).

    Article  Google Scholar 

  78. Margolis, B., and N. de Takacsy, Phys. Rev. Letters 15:329 (1965).

    Article  Google Scholar 

  79. Muthukrishnan, R., and M. Baranger, Phys. Rev. Letters 18:160 (1965).

    Article  Google Scholar 

  80. Newton, T. D., NUSTAT—An Apex Program for Fully Mechanized Shell Model Calculations, Chalk River Nucl. Labs., Ontario, Canada, CRT-1213, 1965.

    Google Scholar 

  81. Nordhagen, R., M. Hoffman, F. Ingelretsen, and A. Tveter, Phys. Rev. Letters 16:163 (1965).

    Article  Google Scholar 

  82. Nathan, O., and S. G. Nilsson, in “Alpha-Beta-and Gamma-Ray Spectroscopy,” Chap. 10, Kai Siegbahn, ed. North-Holland Publishing Co., Amsterdam, 1965.

    Google Scholar 

  83. Siemssen, R. H., L. L. Lee, Jr., and D. Cline, Phys. Rev. 140:B1258 (1965).

    Article  ADS  Google Scholar 

  84. Skorka, S. J., “Compilation of Electromagnetic Transition Strengths in Light Nuclei (A ≤ 40),” II Institute für Experimental physik, der Universität Hamburg, 1965.

    Google Scholar 

  85. Wilsdon, C. E., Ph.D. Thesis, 1965, Sussex.

    Google Scholar 

  86. Zeidman, B., and T. H. Braid, Phys. Rev. Letters 16:139 (1965).

    Article  Google Scholar 

  87. Abulaffio, C., Nucl. Phys. 81:71 (1966).

    Google Scholar 

  88. Adler, C., T. Carocoran, and C. Most, Nucl. Phys. 88:145 (1966).

    Article  Google Scholar 

  89. Alexander, T. K., C. Broude, A. J. Ferguson, J. A. Kuehner, A. E. Litherland, R. W. Ollerhead, and P. J. M. Smulders, Gatlinburg Conf. Nucl. Phys., 1966.

    Google Scholar 

  90. Barker, F. C., Nucl. Phys. 83:418 (1966).

    Article  Google Scholar 

  91. Bernier, J.-P., and M. Harvey, unpublished.

    Google Scholar 

  92. Borysowicz, J., Nucl. Phys. 82:321 (1966).

    Article  Google Scholar 

  93. Brown, G. E., and A. M. Green, Nucl. Phys. 75:401 (1966).

    Article  Google Scholar 

  94. Brown, G. E., and A. M. Green, Nucl. Phys. 85:87 (1966).

    Article  Google Scholar 

  95. Bauer, M., and F. Prats, Nucl. Phys. 89:230 (1966).

    Article  Google Scholar 

  96. Broglia, R. A., and E. E. Maqueda, Nucl. Phys. 86:457.

    Google Scholar 

  97. Celenza, L. S., R. M. Dreizler, A. Klein, and G. J. Dreiss, Phys. Rev. Letters 23:241 (1966).

    Article  Google Scholar 

  98. Cohen, S., R. D. Lawson, and J. M. Soper, Phys. Rev. Letters 21:306 (1966).

    Article  Google Scholar 

  99. Flores, J., and M. Moshinsky, “Studies on Nuclear Structure in the 2s, 1d Shell, III Group Theory and Particle-Hole States.” Instituto de Fisica, Universidad de Mexico, Preprint, 1966.

    Google Scholar 

  100. Glaudemans, P. W. M., B. H. Wildenthal, and J. B. McGrory, Phys. Rev. Letters 21:427 (1966).

    Article  Google Scholar 

  101. Hughes, D. J., and A. B. Volkov, Phys. Rev. Letters 23:113 (1966).

    Article  Google Scholar 

  102. Inoue, T., T. Sebe, H. Hagiwara, and A. Arima, Nucl. Phys. 85:184 (1966).

    Article  Google Scholar 

  103. Kuehner, J. A., and R. W. Ollerhead, Phys. Rev. Letters 20:301 (1966).

    Article  Google Scholar 

  104. Kramer, P., and M. Moshinsky, Nucl. Phys. 82:241 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  105. Lopas, J. S., O. Häusser, R. D. Gill, and H. J. Rose, Nucl. Phys. 89:127 (1966).

    Article  Google Scholar 

  106. Robson, D., Annual Reviews of Nuclear Science 16:119 (1966).

    Article  ADS  Google Scholar 

  107. Reif, R., Phys. Rev. Letters 23:125 (1966).

    Article  Google Scholar 

  108. Seaborn, J. B., and J. M. Eisenberg, Nucl. Phys. 82:308 (1966).

    Article  Google Scholar 

  109. Trlifaj, L., M. Gmitro, and M. Sotana, Nucl. Phys. 86:681 (1966).

    Article  Google Scholar 

  110. Wahsweiler, H. G., M. Danos, and W. Greiner, Phys. Rev. Letters 17:395, and 23:257 (1966).

    Article  ADS  Google Scholar 

  111. Wiza, J. L., R. Middleton, and P. V. Hewka, Phys. Rev. 141:975 (1966).

    Article  ADS  Google Scholar 

  112. Zichichi, A., ed., “Recent developments in particle Symmetries,” Academic Press, New York and London, 1966.

    Google Scholar 

  113. Akiyamu, Y., Private Communication, Tokyo University, Japan.

    Google Scholar 

  114. Bernier, J.-P., and M. Harvey, Nucl. Phys. A94:593 (1967).

    Article  ADS  Google Scholar 

  115. Das Gupta, S., and M. Harvey, Nucl. Phys. A94:602 (1967).

    Article  ADS  Google Scholar 

  116. Iosifescu, M., and F. Stancu, Nucl. Phys. B8:471 (1967).

    Article  ADS  Google Scholar 

  117. Kaiman, C., J.-P. Bernier, and M. Harvey, Can. J. Phys. 45:1297 (1967).

    Article  ADS  Google Scholar 

  118. Sebe, T., Preprint, Hosei University, Japan, and Chalk River Nuclear Laboratories, Canada.

    Google Scholar 

  119. Vergados, J. D., Preprint, University of Michigan, Ann Arbor.

    Google Scholar 

  120. Wathne, C., and T. Engeland, Nucl. Phys. A94:129 (1967).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Plenum Press

About this chapter

Cite this chapter

Harvey, M. (1968). The Nuclear SU 3 Model. In: Baranger, M., Vogt, E. (eds) Advances in Nuclear Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0103-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0103-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0105-0

  • Online ISBN: 978-1-4757-0103-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics