Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 199))

Abstract

Men’s food source derives predominantly from plants, from which only a relatively small proportion can be utilized nutritionally. Of these plants, many must be treated or processed in some way to improve the digestibility or remove naturally occurring toxicants. Considerable effort has been put forth in elucidating these factors in food that may constitute a hazard to man or his domesticated animals when consumed. One group of compounds that has received much attention are the digestive enzyme inhibitors. The distribution of these inhibitors among plants is widespread, and includes most agronomic crops (Liener and Kakade, 1980). The inhibitor is most often found within the edible portion. By far the most prominent of these enzyme inhibitors are the inhibitors of the proteolytic enzymes, particularly trypsin and chymotrypsin. Examples of amylase inhibitors are few, but potentially important. Although no inhibitors of pancreatic lipase have been definitely established, a compound to be discussed may fit this role. Finally, there are certain substances that inhibit all the digestive enzymes in a relatively nonspecific manner. Most notable among these are the tannins (Griffith and Mosley, 1980). The discussion to follow will consider only the more specific types of inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almquist, H.J., Mecchi, E., Kratzer F.H. and Grau, C. R. (1942). Soybean as a source of amino acids for the chick. J. Nutr., 24, 385–392.

    CAS  Google Scholar 

  2. Almquist, H.J.and Merritt, J.B. (1953). Accentuation of dietary amino acid deficiency by raw soybean growth inhibitor. Proc. Soc. Exp. Biol. Med., 84, 333–334

    CAS  Google Scholar 

  3. Almquist, H.J. and Merritt, J. B. (1951). Effect of soybean antitrypsin on experimental amino acid deficiency in the chick. Arch. Biochem. Biophys., 31, 450–453.

    Article  CAS  Google Scholar 

  4. Alumot, E. and Nitsan, Z. (1961). The influence of soybean antitrypsin on the intestinal proteolysis of the chick. J. Nutr., 73, 71–77.

    CAS  Google Scholar 

  5. Applegarth, A., Furuta, F. and Lepkovsky, S. (1964). Response of the chicken pancreas to raw soybeans. Poult. Sci., 43, 733–738.

    Article  Google Scholar 

  6. Barnes, R.H., Kwong, E. and Fiala, G. (1965a). Effect of penicillin added to an unheated soybean diet on cystine excretion in feces of the rat. J. Nutr., 85, 123–126.

    CAS  Google Scholar 

  7. Barnes, R.H., Fiala, G. and Kwong, E. (1965b). Prevention of coprophagy in the rat and growth stimulating effects of methionine, cystine, and penicillin when added to diets containing unheated soybeans. J. Nutr., 85, 127–131.

    CAS  Google Scholar 

  8. Bielorai, R. and Bondi, A. (1963). Relationship between ‘antitryptic factors’ of some plant protein feeds and products of proteolysis pre-cipitable by trichloroacetic acid. J. Sci. Food Agric, 14,124–132.

    Article  CAS  Google Scholar 

  9. Bessho, H. and Kurosawa, S. (1967). Enzyme inhibitor in food. III. Effect of cooking on amylase inhibitor in floor. Eiyo To Shokuryo, 20, 317–319. Chem. Abst. 68: 113474e.

    Article  CAS  Google Scholar 

  10. Bo-Linn, G., Santa Ana, C, Morawski, S. and Fordstran, J. (1982). Starch blockers — their effect on calorie absorption from a high-starch meal. New Engl. J. Med., 307, 1413–1416.

    Article  CAS  Google Scholar 

  11. Booth, A.N., Robibins, D. J., Ribelin, W.E. and DeEds, F. (1960) Efffect of raw soybean meal and amino acids on pancreatic hypertrophy in rats. Proc. Soc. Exp. Med. Biol., 104, 681–683.

    CAS  Google Scholar 

  12. Booth, A.N., Robbins, D.J., Ribelin, W. E., DeEds, F., Smith, A.K. and Rackis, J. J. (1964). Prolonged pancreatic hypertrophy and reversibility in rats fed raw soybean meal. Proc. Soc. Exp. Biol. Med., 116, 1067–1068.

    CAS  Google Scholar 

  13. Borcher, R. (1961). Counteraction of the growth depression of raw soybean meal by amino acid supplements in weanling rats. J. Nutr., 75, 330–334.

    Google Scholar 

  14. Bowman, D. (1945). Amylase inhibitors of navy beans. Science, 102, 358–359.

    Article  CAS  Google Scholar 

  15. Bowman, D. (1941). Fractions derived from soybeans and navy beans which retard tryptic digestion of casein. Proc. Soc. Exp. Biol. Med., 57, 139–140.

    Google Scholar 

  16. Bozzini, A. and Silano, V. (1978). Control through breeding methods of factors affecting nutritional quality of cereals and grain legumes, In “Nutritional Improvement of Food and Feed Proteins”, M. Friedman, ed., Plenum Press, New York, pp. 249–274.

    Chapter  Google Scholar 

  17. Brand, S.J. and Morgan, R. G. H. (1981). The release of rat intestinal cholecystokinin after oral trypsin inhibitor measured by bio-assay. J. Physiol., 319, 325–343.

    CAS  Google Scholar 

  18. Carroll, R.W., Hensley, G.W. and Graham, W. R., Jr. (1952). The site of nitrogen absorption in rats fed raw and heat-treated soybean meals. Science, 115, 36–39.

    Article  CAS  Google Scholar 

  19. Carroll, R.W., Hensley, G.W., Sittler, C. L., Wilcox, E.L. and Graham, W. R., Jr. (1953). Absorption of nitrogen and amino acids from soybean meal as affected by heat treatment or supplementation with aureomycin and methionine. Arch. Biochem. Biophys., 45, 260–274.

    Article  CAS  Google Scholar 

  20. Chan, J. and deLumen, B. O. (1982). Biological effects of isolated trypsin inhibitor from winged bean Psophocarpus tetragonolobus on rats. J. Agric. Food Chem., 30, 46–50.

    Article  CAS  Google Scholar 

  21. Chernick S. S., Lepkovsky, S. and Chaikoff, I. L. (1948). A dietary factor regulating the enzyme content of the pancreas: changes induced in size proteolytic activity by the ingestion of raw soybean meal. Am. J. Physiol., 155, 33–41.

    CAS  Google Scholar 

  22. Corring, T. (1980). The adaptation of digestive enzymes to the diet: its physiological significance. Reprod. Nutr. Develop., 20, 1217–1235.

    Article  CAS  Google Scholar 

  23. Corring, T. (1974). Regulation de la secretion pancreatique par retroaction negative chez le porc. Ann. Biol. Anim. Biochem. Biophys., 14, 487–498.

    Article  CAS  Google Scholar 

  24. Crass, R. A. and Morgan, R. G. H. (1982). The effect of long-term feeding of soya-bean flour on pancreatic growth in the rat. Br. J. Nutr., 47, 119–129.

    Article  CAS  Google Scholar 

  25. Davicco, M.J., Lafaivre, J., Thiuend, P. and Barlet, J. P. (1979). Feedback regulation of pancreatic secretion in the young milk-fed calf. Ann. Biol. Anim. Bioh. Biophys., 19, 1147–1152.

    Article  CAS  Google Scholar 

  26. de Muelenaere, H.J.H. (1964). Studies on the digestion of soybeans. J. Nutr., 82, 197–205.

    Google Scholar 

  27. Dijkhof, J. and Poort, C. (1978). Changes in rat pancreatic protein synthesis after a single feeding with diets containing raw or heated soybeans. J. Nutr., 108, 1222–1228.

    CAS  Google Scholar 

  28. DiMagno, E., Go, V. and Summerskill, W. (1973). Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency. New Engl. J. Med., 288, 813–815.

    Article  CAS  Google Scholar 

  29. Dunaif, G, and Schneeman, B. O. (1981). The effect of dietary fiber on human pancreatic enzyme activity in vitro. Am. J. Clin. Nutr., 34, 1034–1035.

    CAS  Google Scholar 

  30. Fauconneau, G. and Michel, M. C. (1970). The role of the gastrointestinal trace in the regulation of protein metabolism. In “Mammalian Protein Metabolism”, H. Munro, ed., Academic Press, New York.

    Google Scholar 

  31. Figarella, C., Negri, G.A. and Guy, O. (1974). Studies on the inhibition of the two human trypsins. In “Proteinase Inhibitors”, Fritz et al., eds., Springer-Verlag, New York.

    Google Scholar 

  32. Fisher, H. and Johnson, D., Sr. (1958). The effectivness of essential amino acid supplementation in overcoming the growth depression of unheated soybean meal. Arch. Biochem. Biophys., 77, 124–128.

    Article  CAS  Google Scholar 

  33. Folsch, U., Grieb, N., Caspary, W. and Creutzfeldt, W. (1981). Influence of short- and long-term feeding of an alpha-amylase inhibitor (BAY e 4609) on the exocrine pancreas of the rat. Digestion, 21,74–82.

    Article  CAS  Google Scholar 

  34. Gerltler, A., Birk, Y. and Bondi, A. (1967). A comparative study of the nutritional and physiological significance of pure soybean trypsin inhibitors and of ethanol-extracted soybean meals in chicks and rats. J. Nutr., 91, 358–370.

    Google Scholar 

  35. Gertler, A. and Nitsan, Z. (1970). The effect of trypsin Inhibitors on pancreotopeptidase E, trypsin, chymotrypsin, and amylase in the pancreas and intestinal tract of chicks receiving raw and heated soya-bean diets. Br. J. Nutr., 24, 803–804.

    Article  Google Scholar 

  36. Gorrill, A. D. L. and Thomas, J. W. (1967). Body weight changes, pancreas size and enzyme activity, and proteolytic enzyme activity and protein digestion in intestinal contents from calves fed soybean and milk protein diets. J. Nutr., 92, 215–223.

    CAS  Google Scholar 

  37. Grau, C. R. and Carroll, R. W. (1958). Evaluation of protein quality of processed plant protein foodstuffs. In “Processed Plant Protein Foodstuffs,” A. M. Altschul, ed., Academic Press, New York.

    Google Scholar 

  38. Gray, G. (1971). Intestinal digestion and maldigestion of dietary carbohydrates. Ann. Rev. Med., 22, 391–404.

    Article  CAS  Google Scholar 

  39. Green, G. M., Olds, B. O., Matthews, G. and Lyman, R. L. (1973). Protein as a regulator of pancreatic enzyme secretion in the rat. Proc. Soc. Exp. Biol. Med., 142, 1162–1167.

    CAS  Google Scholar 

  40. Green, G. M. and Lyman R. L. (1972). Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitor Induced hypersecretion in rats. Proc. Soc. Exp. Biol. Med., 140, 6–12.

    CAS  Google Scholar 

  41. D. W. and Moseley, G. (1980). The effect of diets containing field beans of high or low polyphenolic content on the activity of digestive enzymes in the Intestines of rats. J. Sci. Food Agric., 31, 255–259.

    Article  Google Scholar 

  42. Haines, P. C. and Lyman, R. L. (1961). Relationship of pancreatic enzyme secretion to growth inhibition in rats fed soybean trypsin Inhibitor. J. Nutr., 74, 445–452.

    CAS  Google Scholar 

  43. Ham, W. E. and Sanstedt, R. M. (1944). A proteolytic inhibiting substance in the extract from unheated soybean meal. J. Biol. Chem., 154, 505–506.

    CAS  Google Scholar 

  44. Hayward, J.W., Steenbock, H. and Bohsted, G. (1936). The effect of heat as used in the extraction of soybean oil upon the nutritive value of the protein of soy bean meal. J. Nutr., 11, 219–234.

    CAS  Google Scholar 

  45. Hewitt, D., Coates, M. E., Kakade, M. L. and Liener, I. E. (1973). A comparison of fractions prepared from navy (haricot) beans (Phaseolus vulgaris L.) in diets from germ-free and conventional chicks. Br. J. Nutr., 29, 423–435.

    Article  CAS  Google Scholar 

  46. Ho, R., Aranda, C. and Venico, J. (1981). Species difference in response to two naturally occurring alpha-amylase inhibitors. J. Pharm. Pharmacol., 33, 351.

    Article  Google Scholar 

  47. Ihse, I., Lundquist, I. and Arnesijo, B. (1976). Oral trypsin inhbitorinduced improvement of the exocrine and endocrine pancreatic functions in alloxan diabetic rats. Scand. J. Gastroent., 11, 363–368

    CAS  Google Scholar 

  48. Ihse, I., Lilia, P. and Lundquist, I. (1977). Feedback regulation of pancreatic enzyme secretion by intestinal trypsin in man. Digestion, 15, 303–308.

    Article  CAS  Google Scholar 

  49. Ikegami, S., Takai, Y. and Iwoa, H. (1975). Effect of dietary protein on proteolytic activities in the pancreatic tissue and contents of the small intestine in rats. J. Nutr. Sci. Vitaminol., 21, 287–295.

    Article  CAS  Google Scholar 

  50. Johnson, A., Hurwitz, R. and Kretchmer, N. (1977). Adaptation of rat pancreatic amylase and chymotrypsinogen to changes in diet. J. Nutr., 107, 87–96.

    CAS  Google Scholar 

  51. Kakade, M. L., Arnold, R. L., Liener, I. E. and Waibel, P.E. (1969). Unavailability of cystine from trypsin inhibitors as a factor contributing to the poor nutritive value of navy beans. J. Nutr., 99, 34–41.

    CAS  Google Scholar 

  52. Kakade, M. L., Barton, T. L., Schaible, P. J. and Evan, R. J. (1967). Biochemical changes in the pancreas of chicks fed raw soybeans and soybean meal. Poult. Sci., 46, 1578–1585.

    Article  CAS  Google Scholar 

  53. Kakade, M. L., Hoffa, D. E. and Liener, I. E. (1973). Contribution of trypsin inhibitors to the deleterious effects of unheated soybeans fed to rats. J. Nutr., 103, 1772–1778.

    CAS  Google Scholar 

  54. Kakade, M. L., Thompson, R. D., Engelstad, W. W., Behrens, G. C., Yoder, R. D. and Crave, F. M. (1976). Failure of soybean trypsin Inhibitors to exert deleterious effects in calves. J. Dairy Sci., 59, 1484–1489.

    Article  CAS  Google Scholar 

  55. Keup, U. and Puls, W. (1974). Influence of an amylase inhibitor,BAY e4609, on the conversion of orally applicated starch into total lipids of rat adipose tissue. In “Recent Advances in Obesity Research,” A. Howard, ed., Newman Publishing Co., Ltd. London, England.

    Google Scholar 

  56. Khayambayashi, H. and Lyman, R. L. (1966). Growth depression and pancreatic and intestinal changes in rats forced-fed amino acid diets containing trypsin inhibitor. J. Nutr., 89, 455–464.

    Google Scholar 

  57. Kneen, E. and Sanstedt, R. (1943). An amylase inhibitor from certain cereals. J. Am. Chem. Soc., 65, 1247–1248.

    Article  CAS  Google Scholar 

  58. Kneen, E. and Sanstedt, R.(1946). Distribution and general properties of an amylase inhibitor in cereals. Arch. Biochem.Biophys., 9, 235–249.

    CAS  Google Scholar 

  59. Konijn, A. M. and Guggenheim, K. (1967). Effect of raw soybean flour on the composition of rat pancreas. Proc. Soc. Expt. Biol. Med., 126, 65–67.

    Google Scholar 

  60. Krogdahl, A. and Holm, H. (1979). Inhibition of human and rat pancreatic proteinases by crude and purified soybean proteinase inhibitors. J. Nutr., 109, 551–558.

    CAS  Google Scholar 

  61. Lang, J., Chang-Hum. L., Reyes, P. and Briggs, G. (1974). Interference of starch metabolism by alpha-amylase inhibitors. Fed. Am. Soc. Exp. Biol. 33, 718 (Abstract).

    Google Scholar 

  62. Lavau, M., Bazin, R. and Herzog, J. (1974). Comparative effects of oral and parenteral feeding on pancreatic enzymes in the rat. J. Nutr., 104, 1432–1437.

    CAS  Google Scholar 

  63. Lepkovsky, S., Koike, T., Sugiura, M., Dimick, M. K. and Furuta, F. (1966). Pancreatic amylase in chickens fed on soya-bean diets. Br. J. Nutr., 20, 421–437.

    Article  CAS  Google Scholar 

  64. Liener, I. E. (1979a).Significance for humans of biologically active factors in soybeans and other food legumes. J. Am. Oil. Chemists Soc., 56, 121–129.

    Article  CAS  Google Scholar 

  65. Liener, I. E. (1979b). Protease inhibitors and lectins. In “International Review of Biochemistry,” A. Veuberger and T. H. Jukes, eds., University Park Press, Baltimore, MD.

    Google Scholar 

  66. Liener, I. E. and Kakade, M. L. (1980). Protease inhibitors. In “Toxic Constituents of Plant Foodstuffs,” I. E. Liener, ed., Academic Press, New York.

    Google Scholar 

  67. Lyman, R. L. (1957). The effect of raw soybean meal and trypsin inhibitor diets on the intestinal and pancreatic nitrogen secretion in the rat. J. Nutr., 62, 285–294.

    CAS  Google Scholar 

  68. Lyman, R. L. and Lepkovsky, S. (1957). The effect of raw soybean meal and trypsin inhibitor diets on pancreatic enzyme secretion in the rat. J. Nutr., 62, 269–284.

    CAS  Google Scholar 

  69. Lyman, R. L., Olds, B. O., and Green, G. M. (1974). Chymotrypsinogen in the intestine of rats fed soybean trypsin inhibitor and its inability to suppress pancreatic enzyme secretions. J. Nutr., 104, 105–110.

    CAS  Google Scholar 

  70. Macri, A., Parlamenti, R., Silano, V. and Valfre, F. (1977). Adaptation of the domestic chicken, Gallus Domesticus, to continuous feeding of albumin amylase inhibitors from wheat flour as gastro-intestinal microgranules. Poult. Sci., 56, 434–441.

    Article  CAS  Google Scholar 

  71. Mainz, D. L., Black, O. and Webster, P. D. (1973). Hormonal control of pancreatic growth. J. Clin. Invest., 52, 2300–2304.

    Article  CAS  Google Scholar 

  72. Marshall, J. (1975). Alpha-amylase inhibitors in foods. In “Physiological Effects of Food Carbohydrates”, Am. Chem. Soc Symp. Series, 115, 244–266.

    Google Scholar 

  73. Marshall, J. and Lauda, C. (1975). Purification and properties of phaseolamin, an inhibitor of alpha-amylase, from kidney bean, Phaseolus vulgaris. J. Biol. Chem., 250, 8030–8037.

    CAS  Google Scholar 

  74. Melmed, R. N., El-Aaser, A.A.A. and Holt, S. J. (1976). Hypertrophy and hyperplasia of the neonatal rat exocrine pancreas induced by orally administered soybean trypsin inhibitor. Biochem. Biophys. Acta, 421, 280–288.

    Article  CAS  Google Scholar 

  75. Melnick, D., Oser, B.L. and Weiss, S. (1946). Rate of enzymatic digestion of proteins as a factor in nutrition. Science, 103, 326–329.

    Article  CAS  Google Scholar 

  76. Mitchell, H. H., Hamilton, T. S. and Beadles, J. R. (1945). The importance of commercial processing for the protein value of food products. J. Nutr., 29, 13–25.

    CAS  Google Scholar 

  77. Morgan, R. G. H., Levinson, D. A., Hopwood, D., Saunders, J. H. B. and Wormsley, K. G.(1977). Potentiation of the action of azaserine on the rat pancreas by raw soybean flour. Cancer Letters, 3, 87–90.

    Article  CAS  Google Scholar 

  78. Mori, T., Satouchi, K. and Matsushita, S. (1973). A protein inhibiting pancreatic lipase activity in soybean seeds. Agric Biol. Chem., 37, 1225–1226.

    Article  CAS  Google Scholar 

  79. Neurath, H. (1961). Consideration of the occurrence, structure and function of the proteolytic enzymes of the pancreas. In “The Exocrine Pancreas,” A.V.S. de Reuck and M.P. Cameron, eds., Little Brown, Boston, MA.

    Google Scholar 

  80. Nitsan, Z. and Alumot, E. (1964). Overcoming the inhibition of intestinal proteolytic activity caused by raw soybean in chicks of different ages. J. Nutr., 84, 179–184.

    CAS  Google Scholar 

  81. Nitsan, Z. and Bondi, A. (1965). Comparison of nutritional effects induced in chicks, rats and mice by raw soya-bean meal. Br. J. Nutr., 19, 177–187.

    Article  CAS  Google Scholar 

  82. Nitsan, Z. and Nir, I. (1977). A comparative study of the nutritional and physiological significance of raw and heated soya beans in chicks and goslings. Br. J. Nutr., 37, 81–91.

    Article  CAS  Google Scholar 

  83. Osborne, T. B. and Mendel, L. S. (1917). The use of soy bean as food. J. Biol. Chem. 32, 369–387.

    CAS  Google Scholar 

  84. Patten, J. R., Patten, J. A. and Pope, H., II. (1973). Sensitivity of the guinea-pig to raw soya bean in the diet. Food Cosmet. Toxicol., 11, 577–583.

    Article  CAS  Google Scholar 

  85. Patten, J. R., Richards, E. A. and Pope, H., II. (1971). The effect of raw soybean on the pancreas of adult dogs. Proc. Soc. Exp. Biol. Med., 137, 59–63.

    CAS  Google Scholar 

  86. Percival, S. S. and Schneeman, B. O. (1979). Long term pancreatic response to feeding heat damaged casein in rats. J. Nutr., 109, 1609–1614.

    CAS  Google Scholar 

  87. Petrucci, T., Tomasi, M., Cantagalli, P. and Silano, V. (1974). Comparison of wheat albumin inhibitors of alpha-amylase and trypsin. Phytochem., 13, 2487–2495.

    Article  CAS  Google Scholar 

  88. Puls, W. and Keup, U. (1973). Influence of an alpha-amylase inhibitor (BAY d 7791) on blood glucose, serum insulin, and NEFA in starch loading tests in rats, dogs, and man. Diabetologia, 9, 97–101.

    Article  CAS  Google Scholar 

  89. Puls, W. and Keup, U. (1974). Metabolic studies with an amylase inhibitor in acute starch loading tests in rats and men and its influence on the amylase content of the pancreas. In “Recent Advances in Obesity Research,” A. Howard, ed., Newman Publishing Co., Lts., London.

    Google Scholar 

  90. Rackis, J. J. (1965). Physiological properties of soybean trypsin inhibitors and their relationship to pancreatic hypertrophy and growth inhibition of rats. Proc. Fed. Am. Soc. Exp. Biol., 24, 1488–1493.

    CAS  Google Scholar 

  91. Rothman, S. S. and Wells, H. (1967). Enhancement of pancreatic enzyme synthesis by pancreozymin. Am. J. Physiol., 213, 215–218.

    CAS  Google Scholar 

  92. Roy, D. M. and Schneeman, B. O. (1981). Effect of soy protein, casein and trypsin inhibitor on cholesterol, bile acids and pancreatic enzymes in mice. J. Nutr., 111, 878–885.

    CAS  Google Scholar 

  93. Sale, J. K., Goldberg, D. M., Fawcett, A. N. and Wormsley, K. G. (1977). Chronic and acute studies indicating absence of exocrine pancreatic feedback inhibition in dogs. Digestion, l5, 540–55.

    Article  Google Scholar 

  94. Satouchi, K. and Matsushita, S. (1976). Purification and properties of a lipase inhibiting protein from soybean cotyledons. Agric. Biol. Chem., 40, 889–897.

    Article  CAS  Google Scholar 

  95. Satouchi, K., Tomohiko, M. and Matsushita, S. (1974). Characterization of inhibitor protein for lipase in soybean seeds. Agric. Biol. Chem., 38, 97–101.

    Article  CAS  Google Scholar 

  96. Saunders, r. M. (1975). Alpha-amylase inhibitors in wheat and other cereals. Cereal Food World, 20, 282–285.

    Google Scholar 

  97. Savaiano D., Powers, J., Costello, M., Whitaker, J.R. and Clifford, A. (1977). The effect of an alpha-amylase inhibitor on the growth rate of weanling rats. Nutr. Rept. Int., 15, 443–449.

    CAS  Google Scholar 

  98. Saxena, H. C., Jensen, L. S. and McGinnis, J. (1963). Influence of age on utilization of raw soybean meal by chickens. J. Nutr., 80, 391–396.

    CAS  Google Scholar 

  99. Schingoethe, D. J., Aust, S. D. and Thomas, J. W. (1970). Separation of a mouse growth inhibitor in soybeans from trypsin inhibitors. J. Nutr., 100, 739–748.

    CAS  Google Scholar 

  100. Schmidt, D. D., Frommer, W., Junge, B,, Miller, I., Wingender, W. and Truscheit, E. (1977). Alpha-glucosidase inhibitors. Naturwiss., 64, 535–536.

    Article  CAS  Google Scholar 

  101. Schneeman, B. O. (1978). Effect of plant fiber on lipase, trypsin and chymotrypsin activity. J. Food Sci., 43, 634–635.

    Article  CAS  Google Scholar 

  102. Schneeman, B. O., Forman, L. P. and Gallaher, D. (1983). Pancreatic and intestinal enzyme activity in rats fed various fibre sources. In “Fibre in Human and Animal Nutrition,” G.Wallace and L.Bell, eds., Royal Society of New Zealand Bulletin 20.

    Google Scholar 

  103. Schneeman, B. O. and Gallaher, D. (dy1986). Pancreatic response to dietary trypsin inhibitor: variation among species. This volume.

    Google Scholar 

  104. Schneeman, B. O. and Gallaher, D. (1980). Changes in small intestinal digestive enzyme activity and bile acids with dietary cellulose in rats. J. Nutr., 110, 584–590.

    CAS  Google Scholar 

  105. Schneeman, B. O., Chang, I., Smith, L. and Lyman, L. R. (1977). Effect of dietary amino acids, casein, and soybean trypsin inhibitor on pancreatic protein secretion in rats. J. Nutr., 107, 281–288.

    CAS  Google Scholar 

  106. Schneeman, B. O. and Lyman, R. L. (1975). Factors involved in the intestinal feedback regulation on pancreatic enzyme secretion in the rat. Proc. Soc. Exp. Biol. Med., 148, 897–903.

    CAS  Google Scholar 

  107. Sheff, D. (1982). Want to have your pasta and eat it, too?. People Weekly, June,28, 30–32.

    Google Scholar 

  108. Snook, J. T. (1974). Adaptive and nonadaptive changes in digestive enzyme capacity influencing digestive function. Fed. Proc., 33, 88–89.

    CAS  Google Scholar 

  109. Soling, H. and linger, K.(1972). The role of insulin in the regulation of alpha-amylase synthesis in the rat pancreas. Eur. J. Clin. Invest., 2, 199–212.

    Article  CAS  Google Scholar 

  110. Suchino, I., Otsuki, M., Yamasaki, T., Ohki, A., Sakamoto, C, Yuu, H., Maeda, M. and Baba, S. (1981). Effect of alpha-glucosidase inhibitor on human pancreatic and salivary alpha-amylase. Clin. Chim. Acta, 117, 145–152.

    Article  Google Scholar 

  111. Sullivan, I., Comal, K. and Triscari, J. (1980). Novel anti-obesity agents whose primary site of action is the gastrointestinal tract. In “Recent Advances in Obesity Research,” P. Bjorntrop, M. Cairella, and A. Howard, eds., John Libby, London.

    Google Scholar 

  112. Wu, A-L., Clark, S. B. and Holt, P. (1980). Composition of lymph chylomicrons from proximal or distal rat small intestine. Am. J. Clin. Nutr., 33, 582–589.

    CAS  Google Scholar 

  113. Yanatori, Y. and Fujita, T. (1976). Hypertrophy and hyperplasia in the endocrine and exocrine pancreas of rats fed soybean trypsin inhibitor or repeatedly injected with pancreozymin. Arch. Histol. Japan, 39, 67–78.

    Article  CAS  Google Scholar 

  114. Yen, J. T., Hymowitz, T. and Jensen, A. H. (1974). Effects of soybean of different trypsin inhibitor activities on performance of growing swine. J. Anim. Sci., 38, 304–309.

    CAS  Google Scholar 

  115. Yen, J. T., Jensen, A. H. and Simon, J. (1977). Effect of dietary raw soybean and soybean trypsin inhibitor on trypsin and chymotrypsin activities in the pancreas and in small intestinal juice of growing swine. J. Nutr., 107, 156–165. Additional reference

    CAS  Google Scholar 

  116. Lairon, D., Borel, P., Termine, E., Grataroli, R., Chabert, C. and Hauton, J. C. (1985). Evidence for a proteinic inhibitor of pancreatic lipase in cereals, wheat bran and wheat germ. Nutr. Reports Int., 32, 1107–1113.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Gallaher, D., Schneeman, B.O. (1986). Nutritional and Metabolic Response to Plant Inhibitors of Digestive Enzymes. In: Friedman, M. (eds) Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods. Advances in Experimental Medicine and Biology, vol 199. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0022-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0022-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0024-4

  • Online ISBN: 978-1-4757-0022-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics