Skip to main content

Functional Implications of the Three-Dimensional Structure of Bovine Chymosin

  • Chapter
Structure and Function of the Aspartic Proteinases

Abstract

Chymosin (EC 3.4.23.4, formerly rennin) is one of the primary enzymes used to initiate milk clotting for cheese production (MacKinlay & Wake, 1971). This process begins with the specific cleavage of the Phe105*Met106 peptide bond of κ-casein by this enzyme (Jolies et al., 1968). The sequence of this cleavage site is

$$\eqalign{ & {\rm{ - His - Pro - His - Pro - His - Leu - Ser - Phe*Met - Ala - Ile - Pro - Pro - Lys - Lys - }}{\rm{.}} \cr & {\rm{98 105 106 112}} \cr} $$

A number of studies with synthetic peptides, which were designed based on the 103–108 κ-casein sequence, have been undertaken to determine the kinetic parameters of chymosin (e.g., Visser & Rollema, 1986), and recently studies by Visser and coworkers (1987) have been performed which provide information concerning the substrate specificity of this enzyme. Based upon the results of these kinetic and model building studies, it was proposed that residues 103–108 fit snugly into the active site cleft and that the addition of the 98–102 sequence, -His-Pro-His-Pro-His-, assisted in the positioning of the 103–108 peptide segment into the active site by its favorable electrostatic interactions with residues on the protein surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abad-Zapatero, C., Rydel, T. J., & Erickson, J., 1990, Revised 2.3 Å structure of procine pepsin: evidence for a flexible subdomain, Proteins: Struc. Func. Gen., 8: 62.

    Article  CAS  Google Scholar 

  • Andreeva, N. S., Zdanov, A. S., Gustchina, A. E.,& Fedorov, A. A., 1984, Structure of ethanol-inhibited porcine pepsin at 2-Å resolution and binding of the methyl ester of phenylalanyl-diiodotyrosine to the enzyme, J. Biol. Chem., 259: 11353.

    PubMed  CAS  Google Scholar 

  • Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D., Rogers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M., 1977, The protein data bank: a computer-based archival file for macromolecular structures, J. Mol. Biol., 112: 535.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, N. J., 1945, The purification and crystallization of rennin, Biochem. J., 39: 179.

    PubMed  CAS  Google Scholar 

  • Bhat, T. N., 1988, Calculation of an OMIT map, J. Appl. Crystallogr., 21: 279.

    Article  Google Scholar 

  • Blundell, T. L., Cooper, J., Foundling, S. I., Jones, D. M., Atrash, B., & Szelke, M., 1987, On the rational design of renin inhibitors: X-ray studies of aspartic proteinases complexed with transition state analogues, Biochemistry, 26: 5585.

    Article  PubMed  CAS  Google Scholar 

  • Bott, R., Subramanian, E., & Davies, D. R., 1982, Three-dimensional structure of the complex of the Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5-Å resolution, Biochemistry, 21: 6956.

    Article  PubMed  CAS  Google Scholar 

  • Bunn, C. W., Camerman, N., T’sai, L. T., Moews, P. C., & Baumber, M. E., 1970, X-ray diffracton studies of rennin crystals, Phil. Trans. Roy. Soc, B257: 253.

    Google Scholar 

  • Burley, S. K., & Petsko, G. A., 1985, Aromatic-aromatic interaction: a mechanism of protein structure stabilization, Science, 229: 23.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, J. B., Khan, G., Taylor, G., Tickle, I. J., & Blundell, T.L., 1990, Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 Å resolution, J. Mol. Biol., 214: 199.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, J., Foundling, S., Hemmings, A., Blundell, T., Jones, D. M., Hallett, A., & Szelke, M., 1987, The structure of a synthetic pepsin inhibitor complexed with endothiapepsin, Eur. J. Biochem., 169: 215.

    Article  PubMed  CAS  Google Scholar 

  • Finzel, B. C., 1987, Incorporation of fast Fourier transforms to speed restrained least-squares refinement of protein structures, J. Appl. Crystallogr., 20: 53.

    Article  CAS  Google Scholar 

  • Foltmann, B., 1960, Chromatographic purification of prorennin, Acta Chem. Scand., 14: 2247.

    Article  Google Scholar 

  • Foundling, S. I., Cooper, J., Watson, F. E., Cleasby, A., Pearl, L. H., Sibanda, B. L., Hemmings, A., Wood, S.P., Blundell, T.L., Valler, M.J., Norey, C. G., Kay, J., Boger, J., Dunn, B. M., Leckie, B. J., Jones, D. M., Atrash, B., Hallett, A., & Szelke, M., 1987, High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes, Nature, 327: 349.

    Article  PubMed  CAS  Google Scholar 

  • Gilliland, G. L., Winborne, E. L., Nachman, J.,& Wlodawer, A., 1990, The Three-Dimensional Structure of Recombinant Bovine Chymosin at 2.3 Å Resolution, Proteins: Struc.Func. Gen., 8: 82.

    Article  CAS  Google Scholar 

  • Howard, A. J., Gilliland, G. L., Finzel, B. C., Poulos, T. L., Ohlendorf, D. H., & Salemme, F. R., 1987, The use of an imaging proportional counter in macromolecular crystallography, J. Appl. Crystallogr., 20: 383.

    Article  CAS  Google Scholar 

  • James, M. N. G., & Sielecki, A. R., 1983, Structure and refinement of penicillopepsin at 1.8 Å resolution, J. Mol. Biol., 163: 299.

    Article  PubMed  CAS  Google Scholar 

  • Jolies, J., Alias, C., & Jolles, P., 1968, The tryptic peptide with rennin-sensitive linkage of cow’s κ-casein, Biochim. Biophys. Acta, 168: 591.

    Google Scholar 

  • James, M. N. G., Sielecki, A. R., & Hofmann, T., 1985, X-ray diffraction studies on penicillopepsin and its complexes: the hydrolytic mechanism, in “Aspartic Proteinases and Their Inhibitors,” Kostka, V., ed., New York, Walter de Gruyter.

    Google Scholar 

  • Jones, T. A., 1978, A graphics model bulding and refinement system for macromolecules. J. Appl. Crystallogr., 11: 268.

    Article  CAS  Google Scholar 

  • MacKinlay, A. G., & Wake, R. G., 1971, K-casein and its attack by rennin(chymosin), in: “Milk Proteins,” Vol 2. H. A. McKenzie, ed., New York, Academic Press.

    Google Scholar 

  • Moult, J., Sussman, F., & James, M. N. G., 1985, Electron density calculations as an extension of protein structure refinement-Streptomyces griseus protease A at 1.5 Å resolution, J. Mol. Biol., 182: 555.

    Article  PubMed  CAS  Google Scholar 

  • Pearl, L., & Blundell, T., 1984, The active site of acid proteinases, FEBS Lett., 174: 96.

    Article  PubMed  CAS  Google Scholar 

  • Sali, A., Veerapandian, B., Cooper, J. B., Foundling, S. I., Hoover, D. J., & Blundell, T. L., 1987, High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme, EMBO J., 8: 2179.

    Google Scholar 

  • Satow, Y., Cohen, G. H., Padlan, E. A., & Davies, D. R., 1986, Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 Å, J. Mol. Biol., 190: 593.

    Article  PubMed  CAS  Google Scholar 

  • Sielecki, A. R., Fedorov, A. A., Boodhoo, A., Andreeva, N., & James, M. N. G., 1990, Molecular and crystal structure of monoclinic porcine pepsin refined at 1.8 Å resolution, J. Mol. Biol., 214: 143.

    Article  PubMed  CAS  Google Scholar 

  • Suguna, K., Padlan, E. A., Smith, C. W., Carlson, W. D.,& Davies, D. R., 1987a, Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: Implications for a mechanism of action, Proc. Natl. Acad. Sci. U.S.A., 84: 7009.

    Article  PubMed  CAS  Google Scholar 

  • Suguna, K., Bott, R. R., Padlan, E. A., Subramanian, E., Sheriff, S., Cohen, G. H., & Davies, D. R., 1987b, Structure and refinement at 1.8 Å resolution of the aspartic proteinase from Rhizopus chinensis, J. Mol. Biol, 196: 877.

    Article  PubMed  CAS  Google Scholar 

  • Visser, S., & Rollema, H.S., 1986, Quantification of chymosin action on nonlabeled κ-casein-related peptide substrates by ultraviolet spectrophotometry: description of kinetics by the analysis of progress curves, Anal. Biochem., 153: 235.

    Article  PubMed  CAS  Google Scholar 

  • Visser, S., Slangen, C. J., & van Rooijen, P. J., 1987, Peptide substrates for chymosin (rennin). Interaction sequences located outside the (103-108)-hexapeptide region that fits into the enzyme’s active-site cleft, Biochem. J., 244: 553.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Gilliland, G.L., Oliva, M.T., Dill, J. (1991). Functional Implications of the Three-Dimensional Structure of Bovine Chymosin. In: Dunn, B.M. (eds) Structure and Function of the Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 306. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6012-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6012-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6014-8

  • Online ISBN: 978-1-4684-6012-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics