Skip to main content

Protein Oxidation and Proteolytic Degradation General Aspects and Relationship to Cataract Formation

  • Chapter
Antioxidants in Therapy and Preventive Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 264))

Abstract

The past few years have seen an explosion of knowledge on the subject of intracellular protein degradation. The view that lysosomes (or rather intra-lysosomal proteases) are primarily responsible for degrading intracellular proteins has now been discredited, and a large number of cytoplasmic proteolytic enzymes have been discovered. It now appears that lysosomes are mostly responsible for the degradation of cellular organelles, whereas most cytoplasmic proteins are degraded by soluble, cytoplasmic proteinases, proteases, and peptidases.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Bond and P. E. Butler, Intracellular proteases, Annu. Rev. Biochem. 56:333 (1987).

    Article  PubMed  CAS  Google Scholar 

  2. K. J. A. Davies, Intracellular proteolytic systems may function as secondary antioxidant defenses: An hypothesis, J. Free Radicals Biol. Med. 2:155 (1986).

    Article  CAS  Google Scholar 

  3. K. J. A. Davies, Protein damage and degradation by oxygen radicals. I. General aspects, J. Biol. Chem. 262:9895 (1987).

    PubMed  CAS  Google Scholar 

  4. K. J. A. Davies, M. E. Delsignore, and S. W. Lin, Protein damage and degradation by oxygen radicals. II. Primary structure, J. Biol. Chem. 262:9902 (1987).

    PubMed  CAS  Google Scholar 

  5. K. J. A. Davies and M. E. Delsignore, Protein damage and degradation by oxygen radicals. III. Secondary and tertiary structure, J. Biol. Chem. 262:9908 (1987).

    PubMed  CAS  Google Scholar 

  6. K. J. A. Davies, S. W. Lin, and R. Pacifíci, Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein, J. Biol. Chem. 262:9914 (1987).

    PubMed  CAS  Google Scholar 

  7. S. P. Wolff, A. Garner, and R. T. Dean, Free radicals, lipids, and protein degradation, Trends Biochem. Sci. (TIBS) 11:27 (1986).

    CAS  Google Scholar 

  8. A. Hershko and A. Ciechanover, Mechanisms of intracellular protein breakdown, Annu. Rev. Biochem. 51:335 (1982).

    Article  PubMed  CAS  Google Scholar 

  9. A. L. Goldberg and F. J. Dice, Intracellular protein degradation in mammalian and bacterial cells, Annu. Rev. Biochem. 43:835 (1974).

    Article  PubMed  CAS  Google Scholar 

  10. A. L. Goldberg and A. C. St. John, Intracellular protein degradation in mammalian and bacterial cells. II, Annu. Rev. Biochem. 45:747 (1976).

    Article  PubMed  CAS  Google Scholar 

  11. A. L. Goldberg and L. Waxman, The role of ATP hydrolysis in the breakdown of proteins and peptides by protease La from Escherichia coli ,J. Biol. Chem. 260:12029 (1985).

    PubMed  CAS  Google Scholar 

  12. B. J. Hwang, W. J. Park, C. H. Chung, and A. L. Goldberg, Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La, Proc. Natl. Acad. Sci. U. S. A. 84:5550 (1987).

    Article  PubMed  CAS  Google Scholar 

  13. K. J. A. Davies and A.L. Goldberg, Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes, J. Biol. Chem. 262:8220 (1987).

    PubMed  CAS  Google Scholar 

  14. K. J. A. Davies and A. L. Goldberg, Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells, J. Biol. Chem. 262:8227 (1987).

    PubMed  CAS  Google Scholar 

  15. A. Taylor and K. J. A. Davies, Protein oxidation and diminished proteolytic capacity in cataract formation during aging, Free Radical Biol. Med. 3:371 (1987).

    Article  CAS  Google Scholar 

  16. K. J. A. Davies and S. W. Lin, Degradation of oxidatively.denatured proteins in Escherichia coli, Free Radical Biol. Med. 5:215 (1988).

    Article  CAS  Google Scholar 

  17. K. J. A. Davies and S. W. Lin, Oxidatively denatured proteins are degraded by an ATP independent pathway in Escherichia coli ,Free Radical Biol. Med. 5:225 (1988).

    Article  CAS  Google Scholar 

  18. D. C. Salo, S. W. Lin, R. E. Pacifíci, and K. J. A. Davies, Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide, Free Radical Biol. Med. 5:335 (1988).

    Article  CAS  Google Scholar 

  19. O. Marcillat, Y. Zhang, S. W. Lin, and K. J. A. Davies, Mitochondria contain a proteolytic system which can recognize and degrade oxidatively denatured proteins, Biochem. J. 254:677 (1988).

    PubMed  CAS  Google Scholar 

  20. O. Marcillat, Y. Zhang, and K. J. A. Davies, Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin, Biochem. J. 254:677 (1988).

    PubMed  CAS  Google Scholar 

  21. K. J. A. Davies, Proteolytic systems as secondary antioxidant defenses, in: Cellular Antioxidant Defense Mechanisms,C. K. Chow, ed., Vol. 2, p. 25, CRC Press, Boca Raton (1988).

    Google Scholar 

  22. K. J. A. Davies, Free radicals and protein degradation in human red blood cells, in: Cellular and Molecular Aspects of Aging: The Red Cell as a Model,J. W. Eaton, D. K. Konzen, and J. G. White, eds., p. 15, Alan R. Liss, New York (1985).

    Google Scholar 

  23. K. J. A. Davies, The role of intracellular proteolytic systems in antioxidant defenses, in: Superoxide and Superoxide Dismutase in Chemistry, Biology, and Medicine,G. Rotillio, ed., p. 443, Elsevier, Amsterdam (1986).

    Google Scholar 

  24. K. J. A. Davies, Protein oxidation, protein cross-linking, and proteolysis in the formation of lipofuscin: Rationale and methods for the measurement of protein degradation, in: Lipofuscin 1987: State of the Art,I. Zs.-Nagy, ed., p. 109, Elsevier Science, Amsteram (1988).

    Google Scholar 

  25. K. J. A. Davies, Oxidative stress causes protein degradation and lipid peroxidation by different mechanisms in red blood cells, in: Lipid Peroxidation in Biological Systems,A. Sevanian, ed., p. 100, American Oil Chemists Society, Champaign, Ilinois (1988).

    Google Scholar 

  26. K. J. A Davies, Possible importance of proteolytic systems as secondary antioxidant defenses during ischemia-reperfusion injury, in: The Role of Oxygen Radicals in Cardiovascular Diseases,A. L’Abbate and F. Ursini, eds., p. 143, Kluwer Academic Publishers, Dortrecht (1988).

    Google Scholar 

  27. R. E. Pacifici, S. W. Lin, and K. J. A Davies, The measurement of protein degradation in response to oxidative stress, in: Oxygen Radicals in Biology and Medicine,M. G. Simic and K. A. Taylor, eds., p. 531, Plenum Press, New York (1988).

    Google Scholar 

  28. K. J. A Davies, Intracellular proteolytic systems as secondary antioxidant defenses, in: Oxygen Radicals in Biology and Medicine,M. G. Simic and K. A. Taylor, eds., p. 575, Plenum Press, New York (1988).

    Google Scholar 

  29. R. E. Pacifici and K. J. A. Davies, A 700-kDa proteinase which selectively degrades oxidatively denatured hemoglobin, FASEB J. 2:A1007 (1988).

    Google Scholar 

  30. K. J. A Davies, S. W. Lin, and R. E. Pacifici, The degradation of oxidatively denatured proteins: A housekeeping function of M. O. P., International Committee on Proteolvsis (I. C. O. P.) Newsletter, p. 3, August (1988).

    Google Scholar 

  31. A Taylor, B. Blondin, K. J. A Davies, and K. Murakami, Relationships between ascorbate levels, accumulation of damaged proteins, and proteolytic capabilities in the presence and absence of photooxidative stress to the guinea pig eye lens, Abstracts of the fourth International Congress on Oxygen Radicals, W-20 (1987).

    Google Scholar 

  32. K. Murakami, J. H. Jahngen, S. W. Lin, K. J. A Davies, and A Taylor, A lens protease which shows enhanced rates of degradation of oxidatively modified alpha-crystallin, Free Radical Biol. Med. (1989, in press).

    Google Scholar 

  33. R. L. Levine, C. N. Oliver, R. M. Fulks, and E. R. Stadtman, Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis, Proc. natl. Acad. Sci. U. S. A 78:2120 (1981).

    Article  PubMed  CAS  Google Scholar 

  34. R. T. Dean and J. K. Pollak, Endogenous free radical generation may influence proteolysis in mitochondria, Biochem. Biophvs. Res. Commun. 126:1082 (1985).

    Article  CAS  Google Scholar 

  35. R. T. Dean, S. M. Thomas and A Garner, Free-radical-mediated fragmentation of monoamine oxidase in the mitochondrial membrane, Biochem. J. 240:489 (1986).

    PubMed  CAS  Google Scholar 

  36. S. P. Wolff and R. T. Dean, Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymatic hydrolysis, Biochem. J. 234:399 (1986).

    PubMed  CAS  Google Scholar 

  37. L. Fucci, C. N. Oliver, M. J. Coon, and E. R. Stadtman, Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implication in protein turnover and aging, Proc. Natl. Acad. Sci. U. S. A 80:1521 (1983).

    Article  PubMed  CAS  Google Scholar 

  38. R. L. Levine, Oxidative inactivation of glutamine synthetase: I. Inactivation is due to loss of one histidine residue, J. Biol. Chem. 258:11823 (1983).

    PubMed  CAS  Google Scholar 

  39. R. L. Levine, Oxidative modification of glutamine synthetase: II. Characterization of the ascorbate model system, J. Biol. Chem. 258:11828 (1983).

    PubMed  CAS  Google Scholar 

  40. K. Nakamura and E. R. Stadtman, Oxidative inactivation of glutamine synthetase subunits, Proc. Natl. Acad. Sci. U. S. A 81:2011 (1984).

    Article  PubMed  CAS  Google Scholar 

  41. A.J. Rivett, Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases, J. Biol. Chem. 260:300 (1985).

    PubMed  CAS  Google Scholar 

  42. E. R. Stadtman and M. E. Wittenberger, Inactivation of Escherichia coli glutamine synthetase by xanthine oxidase, nicotinate hydroxylase, horseradish peroxidase, or glucose oxidase: effects of ferredoxin, putidaredoxin and manadione, Ach. Biochm. Biophvs. 239:379 (1985).

    PubMed  CAS  Google Scholar 

  43. J. E. Roseman and R. L. Levine, Purification of a protease from Escherichia coli with specificity for oxidized glutamine synthetase, J. Biol. Chem. 252:2101 (1987).

    Google Scholar 

  44. R. Hough, G. Pratt, M. Rechsteiner, J. S. Bond, and M. Orlowski, A rose by any other name’-or opinions of naming enzymes, International Committee on Proteolvsis (I. C. O. P.) Newsletter, p. 3, January (1988).

    Google Scholar 

  45. A J. Rivett, The multicatalytic proteinase of mammalina cells, Arch. Biochem. Biophvs. 268:1 (1989).

    Article  CAS  Google Scholar 

  46. L. Waxman, J. M. Fagan, and A L. Goldberg, Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates, J. Biol. Chem. 262:2451 (1987).

    CAS  Google Scholar 

  47. R. Hough, G. Pratt, and M. Rechsteiner, Purification of two high molecular weight proteases from rabbit reticulocyte lysates, J. Biol. Chem. 262:8303 (1987).

    PubMed  CAS  Google Scholar 

  48. J. Cervera and R. L. Levine, Modulation of the hydrophobicity of glutamine synthetase by mixed function oxidation, FASEB J. 2:2591 (1988).

    PubMed  CAS  Google Scholar 

  49. A.-P. Arrigo, K. Tanaka, A L. Goldberg, and W. J. Welch, Identity of the 195 ’prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome), Nature 331:192 (1988).

    Article  PubMed  CAS  Google Scholar 

  50. J. J. Harding and M. J. C. Crabbe, The lens: development, proteins, metabolism and cataract, in: The Eye,M. Davson, ed., Vol. IB, p. 207, Academic Press, New York (1984).

    Google Scholar 

  51. A. M. J. Blow, Proteolyses in the lens, in: Proteinase in Mammalian Cells and Tissues,A. J. Barrett, ed., North Holland Publishing Co., New York, p. 501 (1979).

    Google Scholar 

  52. H. J. Hoenders and H. Bloemendal, Aging of lens proteins, in: Molecular and Cellular Biology of the Lens,H. Bloemendal, ed., p. 279, John Wiley and Sons (1981).

    Google Scholar 

  53. J. J. Harding, Changes in lens proteins in cataract, in: Molecular and Cellular Biology of the Lens,H. Bloemendal, ed., John Wiley and Sons, New York, p. 327 (1981).

    Google Scholar 

  54. S. D. Varma, D. Chand, Y. R. Sharma, J. R. Kuck, Jr., and R. D. Richards, Oxidative stress on lens and cataract formation: role of light and oxygen, Curr. Eve Res. 3:35 (1984).

    Article  CAS  Google Scholar 

  55. J. S. Zigler and J. D. Goosey, Singlet oxygen as a possible factor in human senile nuclear cataract development, Curr. Eve Res. 3:59 (1984).

    Article  CAS  Google Scholar 

  56. J. S. Zigler, H. M. Jernigan, N. S. Perlmutter, nd J. H. Kinoshita, Photodynamic cross-linking of polypeptides in intact rat lens, Exp. Eve Res. 35:239 (1982).

    CAS  Google Scholar 

  57. S. D. Varma, S. Kumar, and R. D. Richards, Light induced damage to ocular lens cation pumpprevention by vitamin C., Proc. Natl. Acad. Sci. 76:3501 (1979.

    Article  Google Scholar 

  58. M. H. Garner and A. Spector, Selective oxidation of systeine and methionine in normal and senile cataractous lenses, Proc. Natl. Acad. Sci. U. S. A. 77:1274 (1980).

    Article  PubMed  CAS  Google Scholar 

  59. O. Roy, J. Dillon, W. Wada, W. Chaney, and A. Spector, Nondisulfide polymerization of gamma and beta crystallin in the humn lens, Proc. Natl. Acad. Sci. U. S. A. 81:2878 (1984).

    Article  PubMed  CAS  Google Scholar 

  60. J. S. Zigler, Jr. and H. H. Hess, Cataracts in the Royal College of Surgeon rats: evidence for initiation by oipid peroxidation products, E.p. Eve Res. 41:67 (1985).

    Article  CAS  Google Scholar 

  61. S. Zigman, The role of sunlight in human cataract formation,Survey of Cataract Formation27:317 (1983).

    CAS  Google Scholar 

  62. J. Blondin, V. Baragi, E. Schwartz, J. A. Sadowski, and A. Taylor, Delay of UV-induced eye lens protein damage in guinea pigs by dietary ascorbate, J. Free Radicals Biol. Med. 2:275 (1986).

    Article  CAS  Google Scholar 

  63. J. Blondin and A. Taylor, Measures of leucine aminopeptidase can be used to anticipate UV induced age-related damage to lens proteins, Mech. Aging Develop. 41:39 (1987).

    Article  CAS  Google Scholar 

  64. N. H. Ansari, A. Schulter, and S. K. Srivastava, Antioxidant (BHT) significantly delays galactose cataract formation, Invest. Ophthalmol. Vis. Sci. 28:192 (1987).

    Google Scholar 

  65. K. K. Sharma and B. J. Ortwerth, Isolation and characterization of a new aminopeptidase from bovine lens, J. Biol. Chem. 261:4295 (1986).

    PubMed  CAS  Google Scholar 

  66. H. Yoshida, T. Murachi, and I. Tsukahara, Distribution of calpain I, calpain II, and calpastatin in bovine lens, Invest. Ophthalmol. Vis. Sci. 25:953 (1985).

    Google Scholar 

  67. D. A. Eisenhauer and A Taylor, protease activities in cultured bovine lens epithelial cells of various passage, Invest. Ophthalmol. Vis. Sci. 28:384 (1987).

    Google Scholar 

  68. A. Taylor, Leucine aminopeptidase activity is diminished in aged hog, beef and human lens, in: Intracellular Protein Catabolism,D. Kharallah, J. S. Bond, and J. W. C. Bird, eds., p. 299, Alan R. Liss, New York (1985).

    Google Scholar 

  69. G. R. McCarty and A Taylor, comparison of aminopeptidase sensitivity of Mn2+ and bestatin in bovine, human and rabbit lens, Int. Soc. Eve Res. 148 (1984).

    Google Scholar 

  70. G. R. McCarty and A Taylor, Resolution and partial purification of new aminopeptidase activities in beef lens, Fed. Proc. 44:878 (1985).

    Google Scholar 

  71. K. R. Fleshman, J. W. Margolis, S. C. J. Fu, and B. J. Wagner, Age changes in bovine lens endopeptidase activity, Mech. of Ageing and Develop. 31:37 (1985).

    Article  CAS  Google Scholar 

  72. C. Ohrloff, O. Hichwin, R. Olson, and S. Dickman, Glutathione peroxidase, glutathione reductase and Superoxide dismutase in the aging lens, Curr. Eye Res. 3:109 (1984).

    CAS  Google Scholar 

  73. A. Ferrara, Respirazione e glicolisi del cristallino di cavie sottoposte a diéta scorbutigena, Annali D. Ottalmolog. E. Clin. Oculistica 68:529 (1940).

    Google Scholar 

  74. N. K. Monjukowa and M. J. Fradkin, Neue experimentelle Befunde über die pathogenese der katarakt, Archiv für Ophthalmoligie (Abrecht von Graefes) 133:329 (1935).

    Google Scholar 

  75. R. Hill and C. F. Mills, Chemical composition of blood, in: The Biochemists Handbook,C. Long, ed., p. 839, Van Nostrand, Princeton (1968).

    Google Scholar 

  76. R. Heyninger, The component parts of the eye, in: The Biochemists Handbook,C. Long, ed., p. 706, Van Nostrand, Princeton (1968).

    Google Scholar 

  77. J. Bellows, Biochemistry of the lens VII, Some studies on vitamin C and the lens, Arch. Ophthalmol. (Chicago) 16:58 (1936).

    Article  CAS  Google Scholar 

  78. B. Nakamura and O. Nakamura, über das vitamin C in der linse and dem kammerwasser der menschlichen katarakte, Graefes Ach. Clin. Ophthalmol. 134:197 (1935).

    Article  CAS  Google Scholar 

  79. H. K. Muller and W. Buschke, Vitamin C in linse, kammerwasser and blut bei normalen und pathologischem liasenstoffwechsel, Ach. Augenheilkd 108:368 (1934).

    Google Scholar 

  80. J. Berger, D. Shephard, F. Morrow, J. Sadowski, T. Haùe, and A Taylor, Reduced and total ascorbate in guinea pig eye tissues in response to dietary intake, Curr. Eve Res. 7:681 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Davies, K.J.A. (1990). Protein Oxidation and Proteolytic Degradation General Aspects and Relationship to Cataract Formation. In: Emerit, I., Packer, L., Auclair, C. (eds) Antioxidants in Therapy and Preventive Medicine. Advances in Experimental Medicine and Biology, vol 264. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5730-8_77

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5730-8_77

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5732-2

  • Online ISBN: 978-1-4684-5730-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics