Skip to main content

Zinc — a Redox-Inactive Metal Provides a Novel Approach for Protection Against Metal-Mediated Free Radical Induced Injury: Study of Paraquat Toxicity in E. Coli

  • Chapter
Antioxidants in Therapy and Preventive Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 264))

Abstract

The essential mediatory role of copper and iron in a variety of free radical-induced injuries, including paraquat-induced biological damage has been recently demonstrated. It was postulated that these transition metals undergo cyclic redox reactions, and serve as centers for repeated production of hydroxyl radical, which are the ultimate deleterious agents. Additionally, we had presented evidence indicating efficient protection against paraquat toxicity by agents commonly employed (chelators, chemical scavengers and protecting enzymes).

In this study we have used theE. Coil model in order to develop a new approach for protection against paraquat-induced metal-mediated cellular injury. It entails the administration of excess zinc (up to 50 fold over copper), which results in an inhibition of the toxic effect of paraquat. Lineweaver- Burk analysis demonstrates the competitive mode of this inhibition. The suggested mechanism involves the displacement of the redox-active copper (or iron) from its binding site and by this diverting the site of repeated production of free radicals. Thus, use of redox-inactive metals, which possess high similarity of their ligand chemistry, to that of iron and copper but are of relative low toxicity by themselves, should be considered for intervention in paraquat toxicity and in other metal-mediated free radical-induced injurious processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Calderbank, A. (1968) Advn. Pest. Control Res. 2, 127–131.

    Google Scholar 

  2. Dodge, A.D. (1971) Endeavour 111, 130–135.

    Article  Google Scholar 

  3. Dasta, J.F. (1978) Am. J. Hosp. Pharm. 25, 1368–1372.

    Google Scholar 

  4. Autor, A.P. (1974) Life Sci. 14, 1309–1319.

    Article  PubMed  CAS  Google Scholar 

  5. Naito, H., and Yamashita, M. (1987) Human Toxicol. 2, 87–89.

    Article  Google Scholar 

  6. Hassan, H.M., and Fridovich, I. (1978) J. Biol. Chem. 253, 8143–8148.

    PubMed  CAS  Google Scholar 

  7. Hassan, H.M., and Fridovich, I. (1979) J. Biol. Chem. 254, 10846–10852.

    PubMed  CAS  Google Scholar 

  8. Hassan, H.M., and Fridovich, I. (1979) Arch. Biochem. Biophys. 196, 385–395.

    CAS  Google Scholar 

  9. Delval, P.M., and Gillespie, D.J. (1985) Crit. Care Med. 13, 1056–1060.

    Article  Google Scholar 

  10. Smith, L.L. (1986) Annu. Rev. Physiol. 42, 681 -692.

    Article  Google Scholar 

  11. McCord, J.M., and Day, E.D. (1978) FEBS Lett. 22,139–142.

    Article  Google Scholar 

  12. Halliwell, B. (1978) FEBS Lett. 22, 321 -326.

    Article  Google Scholar 

  13. Aust, S.D., Morehouse, L.A., and Thomas, C.E. (1985) J. Free Rad. Biol. Med. 1, 3–25.

    CAS  Google Scholar 

  14. Halliwell, B., and Gutteridge, J.M.C. (1986) Arch. Biochem. Biophys. 246. 501–514.11.

    Article  PubMed  CAS  Google Scholar 

  15. Kohen, R., and Chevion, M. (1985) Free Rad. Res. Commun. 1, 79–88.

    CAS  Google Scholar 

  16. Korbashi, P., Kohen, R., Katzhendler, J., and Chevion, M. (1985) J. Biol. Chem. 221, 12472–12476.

    Google Scholar 

  17. Kohen, R., and Chevion, M. (1988) Biochemistry 2Z, 2597–2603.

    Article  Google Scholar 

  18. Samuni, A., Chevion, M., and Czapski, G. (1981) J. Biol. Chem. 225, 12632–12635.

    Google Scholar 

  19. Shinar, E., Navok, T., and Chevion, M. (1983) J. Biol. Chem. 253, 14778–14783.

    Google Scholar 

  20. Navok, T., and Chevion, M. (1984) Biochem. Biophys. Res. Commun. 122, 297–303.

    Article  CAS  Google Scholar 

  21. Levine, R.L, Oliver, C.N., Fulks, M.R., and Stadtman, E.R. (1980) Proc. Natl. Acad. Sci. USA ZS, 2120–2124.

    Google Scholar 

  22. Chevion, M. (1988) Free Rads Biol. Med. 5, 27–37.

    CAS  Google Scholar 

  23. Kohen, R., Korbashi, P., and Chevion, M. (1983) in: Paraquat Toxicity is Mediated by Transition Metal Ions, Abstract of the First Meeting of Israel Societies of Life Science, Jerusalem, October, 1983.

    Google Scholar 

  24. Sutton, H.C., and Winterbourn, C.C. (1984) Arch. Biochem. Biophys. 235. 106–115.

    Article  PubMed  CAS  Google Scholar 

  25. Winterbourn, C.C., and Sutton, H.C. (1984) Arch. Biochem. Biophys. 225, 116–126.

    Article  Google Scholar 

  26. Kohen, R., and Chevion, M. (1985) Biochem. Pharmacol. 34,1841–1843.

    CAS  Google Scholar 

  27. Hegetschweiler, K., Saltman, P., Dalvit, C., and Wright, P. (1987) Biochem. Biophys. Acta 912 (3)384–397.

    Article  PubMed  CAS  Google Scholar 

  28. Cotton, F.A., and Wilkison, G. (1972) in: Advanced Inorganic Chemistry, New York: Interscience Publishing, 1972.

    Google Scholar 

  29. Eguchi, L.A., and Saltman, P. (1987) Inorg. Chem. 26, 3665–3669.

    Article  CAS  Google Scholar 

  30. Eguchi, L.A., and Saltman, P. (1987) Inorg. Chem. 26, 3669–3672.

    Article  CAS  Google Scholar 

  31. Stability Constants of Metal-Ion Complexes, Part B: Organic Ligands: IUPAC Chemical Data Series,No. 22, (Perrin, D.D., ed.) Pergamon Press, Oxford (1979).

    Google Scholar 

  32. Segel, I.H. (1975) in: Enzyme Kinetics, pp. 161–166, A Wiley-lnterscience Publications, John Wiley and Sons, New York.

    Google Scholar 

  33. Anderegg, G. (1982) Pure Appl. Chem. 54, 2693–2758.

    CAS  Google Scholar 

  34. Willson, R.L. (1977) In: Iron Metabolism, Ciba Foundation Symposia, 51, 331–354.5

    CAS  Google Scholar 

  35. Willson, R.L. (1977) New Scientist, 1 December, 558–560.

    Google Scholar 

  36. Chvapil, M. (1973) Life Sci. 13, 1041–1049.

    Article  PubMed  CAS  Google Scholar 

  37. Girotti, A.W., Thomas, J.P., and Jordan, J.E. (1986) Arch. Biochem. Biophys. 251. 639–653.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Chevion, M., Korbashi, P., Katzhandler, J., Saltman, P. (1990). Zinc — a Redox-Inactive Metal Provides a Novel Approach for Protection Against Metal-Mediated Free Radical Induced Injury: Study of Paraquat Toxicity in E. Coli . In: Emerit, I., Packer, L., Auclair, C. (eds) Antioxidants in Therapy and Preventive Medicine. Advances in Experimental Medicine and Biology, vol 264. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5730-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5730-8_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5732-2

  • Online ISBN: 978-1-4684-5730-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics