Skip to main content

Fluorine-Containing Polyamines: Biochemistry and Potential Applications

  • Chapter
Progress in Polyamine Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 250))

Abstract

Polyamine metabolism and its significance in diseases characterized by rapid cell proliferation have been reviewed recently.1, 2 These reviews emphasize the importance of the polyamine biosynthetic pathway as a promising target for the design of new therapeutic agents and summarize the progress made in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.E. Pegg, Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy, Cancer Res. 48: 759 (1988).

    PubMed  CAS  Google Scholar 

  2. P.P. McCann, A.E. Pegg, and A. Sjoerdsma, “Inhibition of Polyamine Metabolism, Biological Significance and Basis for New Therapies”, Academic Press Inc., Orlando (1987).

    Google Scholar 

  3. N. Seiler, Functions of polyamine acetylation, Can. J. Physiol.Pharmacol. 65: 2024 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. C.J. Bacchi, and P.P. McCann, Parasitic protozoa and polyamines, in: “Inhibition of Polyamine Metabolism, Biological Significance and Basis for New Therapies”, P.P. McCann, A.E. Pegg, and A. Sjoerdsma, eds., Academic Press Inc., Orlando, pp. 317–344 (1987).

    Google Scholar 

  5. P.S. Sunkara, and S.B. Baylin, Inhibitors of polyamine biosynthesis: cellular and in vivo effects on tumor proliferation, in: “Inhibition of Polyamine Metabolism, Biological Significance and Basis of New Therapies”, P.P. McCann, A.E. Pegg, and A. Sjoerdsma, eds., Academic Press Inc., Orlando, pp. 121–140 (1987).

    Google Scholar 

  6. J. Bartholeyns, P. Mamont, and P. Casara, Antitumor properties of (2R, 5R)-6-heptyne-2.5-diamine, a new potent enzyme-activated irreversible inhibitor of ornithine decarboxylase in rodents, Cancer Res. 44: 4972 (1984).

    PubMed  CAS  Google Scholar 

  7. N. Claverie, J.-L. Pasquali, P.S. Mamont, C. Danzin, M. Weil-Bousson, and M. Siat, Immunosuppressive effects of (2R, 5R)-6-heptyne-2, 5-diamine, and inhibitor of polyamine synthesis. II. Beneficial effects on the development of a lupus-like disease in MRL-lpr/lpr mice, Clin. Exp. Immunol. 72: 293 (1988).

    PubMed  CAS  Google Scholar 

  8. P.J. Schechter, J.L.R. Barlow, and A. Sjoerdsma, Clinical aspects of inhibition of ornithine decarboxylase with emphasis on therapeutic trials of eflornithine (DFMO) in cancer and protozoan diseases, in: “Inhibition of Polyamine Metabolism, Biological Significance and Basis of New Therapies”, P.P. McCann, A.E. Pegg, and A. Sjoerdsma, eds., Academic Press Inc., Orlando, pp. 345–364 (1987).

    Google Scholar 

  9. P.S. Mamont, M.-C. Duchesne, A.-M. Joder-Ohlenbusch, and J. Grove, Effects of ornithine decarboxylase inhibitors on cultured cells, in: “Enzyme-Activated Irreversible Inhibitors”, N. Seiler, M.J. Jung, and J. Koch-Weser eds., Elsevier/North Holland Biochemical Press, Amsterdam, pp. 43–54 (1978).

    Google Scholar 

  10. C. Danzin, P. Casara, N. Claverie, B.W. Metcalf, and M.J. Jung, (2R, 5R)-6-heptyne-2, 5-diamine, an extremely potent inhibitor of mammalian ornithine decarboxylase, Biochem. Biophys. Res. Commun. 116: 237 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. P.S. Mamont, M. Siat, A.-M. Joder-Ohlenbusch, A. Bernhardt, and P. Casara, Effects of [2R, 5R]-6-heptyne-2, 5-diamine, a potent inhibitor of L-ornithine decarboxylase, on rat hepatoma cells cultured in vitro. Eur. J. Biochem. 142: 457 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. P. Bey, F. Gerhart, V. Van Dorsselaer, and C. Danzin, α-(fluoro-methyl) dehydroornithine and α-(fluoromethyl) dehydroputrescine analogues as irreversible inhibitors of ornithine decarboxylase, J. Med. Chem. 26: 1551 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. P.S. Mamont, C. Danzin, M. Kolb, F. Gerhart, P. Bey, and A. Sjoerdsma, Narked and prolonged inhibition of mammalian ornithine decarboxylase in vivo by esters of (E)-2-(fluoromethyl) dehydroornithine, Biochem. Pharmacol. 35: 159 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. A.E. Pegg and D.B. Jones, J.A. Secrits III, Effects of inhibitors of S-adenosylmethionine decarboxylase on polyamine content and growth of L1210 cells, Biochem. 27: 1408 (1988).

    Article  CAS  Google Scholar 

  15. D.M. Pett, and H.S. Ginsberg, Metabolism of polyamines in KB cells, Fed. Proc. 27: 615 (1968).

    Google Scholar 

  16. J.E. Kay, and V.J. Lindsay, Control of ornithine decarboxylase activity in stimulated human lymphocytes by putrescine and spermidine, Biochem. J. 132: 791 (1973).

    PubMed  CAS  Google Scholar 

  17. J. Jänne, H. Pösö, and A. Raina, Polyamines in rapid growth and cancer, Biochem. Biophys. Acta 473: 241 (1978).

    PubMed  Google Scholar 

  18. O. Heby, and J. Jänne, Polyamine antimetabolites: Biochemistry, specificity, and biological effects of inhibitors of polyanine synthesis, in.: “Polyamines in Biology and Medicine”, D.R. Morris, and L.J. Marton, eds., Marcel Dekker, New York, pp. 243–310, (1981).

    Google Scholar 

  19. P.S. Mamont, A.-M. Joder-Ohlenbusch, M. Nussli, and J. Grove, Indirect evidence for a strict negative control of S-adenosyl-L-methionine decarboxylase by spermidine in rat hepatoma cells, Biochem. J. 196: 411 (1981).

    PubMed  CAS  Google Scholar 

  20. C.W. Porter, B. Ganis, T. Vinson, L.J. Marton, D.L. Kramer, and R. Bergeron, Comparison and characterization of growth inhibition in L1210 cells by α-difluoromethylornithine, an inhibitor of ornithine decarboxylase, and N1, N8-Bis(ethyl)spermidine, an apparent regulator of the enzyme, Cancer Res. 46: 6279 (1986).

    PubMed  CAS  Google Scholar 

  21. C.W. Porter, J. McManis, R.A. Casero, and R. Bergeron, Relative abilities of bis (ethyl) derivatives of putrescine, spermidine and spermine to regulate polyarnine biosynthesis and inhibit L1210 leukemia cell growth, Cancer Res. 47: 2821 (1987).

    PubMed  CAS  Google Scholar 

  22. J.C. Baillon, P.S. Mamont, J. Wagner, F. Gerhart, and P. Lux, Fluorinated analogues of spermidine as substrates of spermine synthase, Eur. J. Biochem., in press.

    Google Scholar 

  23. R.D. Chambers, The influence of fluorine or fluorocarbon groups on some reaction centres, in.: “Fluorine Organic Chemistry”, R.D. Chambers, ed., John Wiley and Sons, New York, pp. 64–96, (1973).

    Google Scholar 

  24. A.E. Pegg, Recent advances in the biochemistry of polyamines in eu-karyotes, Biochem. J., 234: 249 (1986).

    PubMed  CAS  Google Scholar 

  25. L. Persson, I. Holm, and O. Heby, Regulation of ornithine decarboxylase mRNA translation by polyamines, J. Biol. Chem. 263: 3528 (1988).

    PubMed  CAS  Google Scholar 

  26. T. Karaeji, and A.E. Pegg, Inhibition of translation of mRNAs for ornithine decarboxylase and S-adenosyl methionine decarboxylase by polyamines, J. Biol. Chem. 262: 2427 (1987).

    Google Scholar 

  27. A.E. Pegg, and J.K. Coward, Growth of mammalian cells in the absence of the accumulation of spermine. Biochem. Biophys. Res. Commun. 133: 82 (1985).

    Article  PubMed  CAS  Google Scholar 

  28. S. Sarhan, B. Knödgen, F. Gerhart, and N. Seiler, Chain-fluorinated polyamines as tumor markers. I. In vivo transformation of 2, 2-di-fluoroputrescine into 6, 6-difluorospermidine and 6, 6-difluoro-spermine, Int. J. Biochem. 19: 843 (1987).

    CAS  Google Scholar 

  29. F. Dezeure, S. Sarhan, and N. Seiler, Chain-fluorinated polyamines as tumor markers. IV. Comparison of 2-fluoroputrescine and 2, 2-difluoroputrescine as substrates of spermine synthase in vitro and in vivo, Int. J. Biochem., submitted for publication.

    Google Scholar 

  30. W.E. Hull, W. Kuntz, R.E. Port, and N. Seiler, Chain-fluorinated polyamines as tumor markers. III. Determination of geminal difluoropolyamines and their precursor 2, 2-difluoroputrescine in normal tissues and experimental tumors by in vitro and in vivo 19F-NMR spectroscopy, NMR in Biomed., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Mamont, P.S., Claverie, N., Gerhart, F. (1988). Fluorine-Containing Polyamines: Biochemistry and Potential Applications. In: Zappia, V., Pegg, A.E. (eds) Progress in Polyamine Research. Advances in Experimental Medicine and Biology, vol 250. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5637-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5637-0_61

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5639-4

  • Online ISBN: 978-1-4684-5637-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics