Skip to main content

Abstract

Although acetylcholine (ACh) was first isolated from the brain more than 50 years ago by Chang and Gaddum (see Dale, 1938) and the experiments of Curtis and Eccles (1958) identified the Renshaw cell as cholinoceptive more than 25 years ago, since that time no other synapse in the central nervous system (CNS) has been conclusively shown to be cholinergic. Indeed, the often repeated finding that the action of iontophoretic ACh on central neurons is slow in onset and highly variable in its action has led a number of workers to suggest that ACh does not function as a conventional synaptic transmitter in the brain and instead plays what has come to be known as a neuromodulatory role; i.e., it operates on single neurons by increasing or decreasing the potency of the more conventional synaptic inputs (see Bloom, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, P. R., 1975, An analysis of the dose-response curve at voltage-clamped frog endplates, Pflügers Arch. 360: 145–153.

    PubMed  CAS  Google Scholar 

  • Adams, P. R., 1981, The calcium current of a vertebrate neurone, in: Advances in Physiological Science, Vol. 4 ( J. Salanki, ed.), Akademiai Kiado, Budapest, pp. 135–138.

    Google Scholar 

  • Adams, P. R., and Brown, D. A., 1982, Synaptic inhibition of the M-current: Slow excitatory post-synaptic potential mechanism in bullfrog sympathetic neurones, J. Physiol. (Lond.) 332: 263–272.

    CAS  Google Scholar 

  • Adams, P. R., Brown, D. A., and Constanti, A., 1982a, M-currents and other potassium currents in bullfrog sympathetic neurones J. Physiol. (Lund.) 330: 537–572.

    CAS  Google Scholar 

  • Adams, P. R., Brown, D. A., and Constanti, A., 1982b, Pharmacological inhibition of the M-current, J. Physiol. (Lond.) 332: 223–262.

    CAS  Google Scholar 

  • Adams, P. R., Brown, D. A., and Jones, S. W., 1983, Substance P inhibits the M-current in bullfrog sympathetic neurons, Br. J. Pharmacol. 79: 330–333.

    PubMed  CAS  Google Scholar 

  • Akasu, T., Hirai, K., and Koketsu, K., 1982, Modulatory actions of ATP on membrane potentials of bullfrog sympathetic ganglion cells, Brain Res. 258: 313–317.

    Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1981, Epileptiform burst afterhyperpolarization: Calcium-de-pendent potassium potential in hippocampal CA1 pyramidal cells, Science 210: 1122–1124.

    Google Scholar 

  • Andersen, P., and Curtis, D. R., 1964a, The excitation of thalamic neurones by acetylcholine, Acta Physiol. Scand. 61: 85–99.

    CAS  Google Scholar 

  • Andersen, P., and Curtis, D. R., 1964b, The pharmacology of the synaptic and acetylcholine- induced excitation of ventrobasal thalamic neurons, Acta Physiol. Scand. 61: 100–120.

    CAS  Google Scholar 

  • Anderson, C. R., and Stevens, C. F., 1973, Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction, J. Physiol. (Lond.) 235: 655–691.

    CAS  Google Scholar 

  • Armstrong, D. A., Saper, C. B., Levey, A. I., Wainer, B. H., and Terry, R. D., 1983, Distribution of cholinergic neurons in the rat brain demonstrated by the immunohistochemical localization of choline acetyltransferase, J. Comp. Neurol. 216: 53–68.

    PubMed  CAS  Google Scholar 

  • Barker, J. L., Crayton, J. W., and Nicoll, R. A., 1971, Noradrenaline and acetylcholine response of supraoptic neurosecretory cells, J. Physiol. (Lond.) 216: 19–32.

    Google Scholar 

  • Beddoe, F., Nicholls, P. J., and Smith, H. J., 1971, Inhibition of the muscarinic receptor by dibenamine, Biochem. Pharmacol. 20: 3367–3376.

    CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1981, Acetylcholine-induced modulation of hippocampal pyramidal neurons, Brain Res. 211: 227–234.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1982a, Cholinergic excitation of mammalian hippocampal pyramidal cells, Brain Res. 249: 315–331.

    CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1982b, Ionic mechanisms of cholinergic excitation in mammalian hippocampal pyramidal cells, Brain Res. 249: 333–334.

    CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1982c, Cholinergic pharmacology of mammalian hippocampal pyramidal cells, Neuroscience 7: 1703–1712.

    CAS  Google Scholar 

  • Ben-Ari, Y., Dingledine, R., Kanazawa, I., and Kelly, J. S., 1967a, Inhibitory effects of acetylcholine on neurones in the feline nucleus reticularis thalami, J. Physiol. (Loud.) 261: 647–671.

    Google Scholar 

  • Ben-Ari, Y., Kanazawa, I., and Kelly, J. S. 1976b, Exclusively inhibitory action of iontophoretic acetylcholine on single neurones of feline thalamus, Nature (Land.) 259:327–330.

    Google Scholar 

  • Ben-Ari, Y., Krnjevic, K., Reiffenstein, R. J., and Reinhardt, W., 1981a, Inhibitory conductance changes and action of y-aminobutyrate in rat hippocampus, Neuroscience 6: 2445–2463.

    CAS  Google Scholar 

  • Ben-Ari, Y., Krnjevic, K., Reinhardt, W., and Ropert, N., 1981b, Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus, Neuroscience 6: 2475–2484.

    CAS  Google Scholar 

  • Biscoe, T. J., and Krnjevic, K., 1963, Chloralose and the activity of Renshaw cells, Exp. Neurol. 8: 395–405.

    Google Scholar 

  • Biscoe, T. J. and Straughan, D. W., 1966, Micro-electrophoretic studies of neurones in the rat hippocampus, J. Physiol. (Lund.) 183: 341–359.

    CAS  Google Scholar 

  • Blackman, J. G., Ginsborg, B. L., and House, C. R., 1979, On the time course of the electrical response of salivary gland cells of Nauphoeta cinerea to iontophoretically applied dopamine, J. Physiol. (Loud.) 283: 81–92.

    Google Scholar 

  • Bloom, F. E., 1975, The role of cyclic nucleotides in central synaptic function, Rev. Physiol. Biochem. Pharmacol. 74: 1–103.

    PubMed  CAS  Google Scholar 

  • Bloom, F. E., Costa, E., and Salmoiraghi, G. C., 1965, Anaesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis, J. Pharmacol. Exp. Ther. 150: 244–252.

    PubMed  CAS  Google Scholar 

  • Bolton T. B., 1972, Rate of offset of action of slow-acting muscarinic antagonists is fast, Nature (Loud.) 270: 354–356.

    Google Scholar 

  • Bolton, T. B., 1976, On the latency and form of the membrane responses of smooth muscle to the iontophoretic application of acetylcholine or carbachol, Proc. R. Soc. Lond. B 194: 99–119.

    PubMed  CAS  Google Scholar 

  • Borie, A. B., 1975, Modulation of mitochondrial control of cytoplasmic calcium activity, in: Calcium Transport in Contraction and Secretion (E. Carafoli, F. Clemented, W., Drabikowski, and A. Margietti, eds.) The North Holland Publishing Co., New York, pp. 77–80.

    Google Scholar 

  • Bradley, P. B., and Dray, A., 1972, Short-latency excitation of brain stem neurones in rat by acetylcholine, Br. J. Pharmacol. 45: 372–374.

    PubMed  CAS  Google Scholar 

  • Bradley, P. B., Dhawan, B. N., and Wolstencroft, J. H., 1966, Pharmacological properties of cholinoceptive neurones in the medulla and pons of the cat, J. Physiol. (Lond.) 183: 658–673.

    CAS  Google Scholar 

  • Brown, D. A„ and Adams, P. R., 1980, Muscarinic suppression of a novel voltage-sensitive IC--current in a vertebrate neurone, Nature (Lond.) 283: 673–676.

    CAS  Google Scholar 

  • Brown, D. A., Constanti, A., and Adams, P. R., 1981, Slow cholinergic and peptidergic transmission in sympathetic ganglia, Fed. Proc. 40: 265–2630.

    Google Scholar 

  • Brown, D. A., Docherty, R. J., and Halliwell, J. V., 1983, Chemical transmission in the rat interpeduncular nucleus in vitro, J. Physiol. (Lond.) 341: 655–670.

    CAS  Google Scholar 

  • Brown, J. E., Muller, K. J., and Murray, G., 1971, Reversal potential for an electrophysiological event generated by conductance changes: Mathematical analysis, Science 174: 318.

    PubMed  CAS  Google Scholar 

  • Brownstein, M., Kobayashi, R., Polkovits, M., and Saaverdra, J. M., 1975, Choline acetyltrans-ferase levels in diencephalic nuclei of the rat, J. Neurochem. 24: 35–38.

    PubMed  CAS  Google Scholar 

  • Casnellie, J. E., and Greengard, P., 1974, Guanosine 3’5’-cyclic monophosphate-dependent phosphorylation of endogenous substrate proteins in membranes, Proc Natl. Acad. Sci. USA 71: 1891–1895.

    PubMed  CAS  Google Scholar 

  • Cole, A. E., and Nicoll, R. A., 1983, Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells, Science 221: 1299–1301.

    PubMed  CAS  Google Scholar 

  • Cole, A. E., and Shinnick-Gallagher, P., 1980, Alpha-adrenoceptor and dopamine receptor antagonists do not block the slow inhibitory postsynaptic potential in sympathetic ganglia, Brain Res. 187: 226–230.

    PubMed  CAS  Google Scholar 

  • Cole, A. E., and Shinnick-Gallagher, P., 1984, Muscarinic inhibitory transmission in mammalian sympathetic ganglia mediated by increased potassium conductance, Nature (Land.) 307: 270–271.

    CAS  Google Scholar 

  • Colquhoun, D., and Sakmann, B., 1981, Fluctuations in the microsecond time range of the current through single acetylcholine receptor channels, Nature (Land.) 294: 464–466.

    CAS  Google Scholar 

  • Connor, E. A., and Parsons, R. L., 1983, Analysis of fast excitatory postsynaptic currents in bullfrog parasympathetic ganglion cells, J. Neurosci. 3: 2164–2171.

    PubMed  CAS  Google Scholar 

  • Constanti, A., Adams, P. R., and Brown, D. A., 1981, Why do barium ions imitate acetylcholine? Brain Res. 206: 244–250.

    PubMed  CAS  Google Scholar 

  • Coyle, J. T., Prince, D. L., and DeLong, M. R., 1983, Alzheimer’s disease: A disorder of cortical cholinergic innervation, Science 219: 1184–1190.

    PubMed  CAS  Google Scholar 

  • Crawford, J. M., 1970, The sensitivity of cortical neurones to acidic amino acids and acetylcholine, Brain Res. 17: 287–296.

    PubMed  CAS  Google Scholar 

  • Crawford, J. M., and Curtis, D. R., 1966. Pharmacological studies on feline Betz cells, J. Physiol. (Land.) 186: 121–138.

    CAS  Google Scholar 

  • Crawford, J. M., Curtis, D. R., Voorhoeve, P. E., and Wilson, V. J., 1966, Acetylcholine sensitivity of cerebellar neurones in the cat, J. Physiol. (Lond.) 186: 139–165.

    CAS  Google Scholar 

  • Curtis, D. R., and Eccles, R. M., 1958, The excitation of Renshaw cells by pharmacological agents applied electrophoretically, J. Physiol (Lond.) 141: 435–445.

    CAS  Google Scholar 

  • Curtis, D. R., and Ryall, R. W., 1966b, The acetylcholine receptors of Renshaw cells, Exp. Brain Res. 2: 66–80.

    CAS  Google Scholar 

  • Curtis, D. R., and Ryall, R. W., 1966b, The acetylcholine receptors of Renshaw cells, Ex. Brain Res. 2: 66–80.

    CAS  Google Scholar 

  • Dale, H. H., 1938, Acetylcholine as a chemical transmitter of the effects of nerve impulses, J. Mt. Sinai Hosp. 4: 401–429.

    CAS  Google Scholar 

  • Davis, R., and Vaughan, P. C., 1969, Pharmacological properties of feline red nucleus, Int. J. Neuropharmacol. 8: 475–488.

    PubMed  CAS  Google Scholar 

  • Dingledine, R., and Kelly, J. S., 1977, Brain stem stimulation and the acetylcholine-evoked inhibition of neurones in the feline nucleus reticularis thalami, J. Physiol. (Land.) 271: 135–154.

    CAS  Google Scholar 

  • Dionne, V. E., 1976, Characterization of drug iontophoresis with a fast micro assay technique, Biophys. J. 16: 705–717.

    PubMed  CAS  Google Scholar 

  • Dionne, V. E., Steinbach, J. H., and Stevens, C. F., 1978, An analysis of the dose response relationship at voltage-clamped frog neuromuscular junctions, J. Physiol. (Land.) 281: 421–444.

    CAS  Google Scholar 

  • Dodd, J., and Horn, J., 1983, Muscarinic inhibition of sympathetic C neurones in the bullfrog, J. Physiol. (Land.) 334: 271–291.

    CAS  Google Scholar 

  • Dodd, J., Dingledine, R., and Kelly, J. S., 1981, The excitatory action of acetylcholine on hippocampal neurones of the guinea pig and rat maintained in vitro, Brain Res. 207: 109–127.

    PubMed  CAS  Google Scholar 

  • Duggan, A. W., and Hall, J. G., 1975, Inhibition of thalamic neurones by acetylcholine, Brain Res. 100: 445–449.

    PubMed  CAS  Google Scholar 

  • Dun, N. J., Kaibara, K., and Karczmar, A. G. 1978, Muscarinic and cGMP induced membrane potential changes: Differences in electrogenic mechanisms, Brain Res. 150: 658–661.

    PubMed  CAS  Google Scholar 

  • Eccles, R. M., and Libel, B., 1961, Origin and blockade of the synaptic responses of curarized sympathetic ganglia, J. Physiol. (Lond.) 157: 484–503.

    CAS  Google Scholar 

  • Edwards, S. B., and de Olmos, J. S., 1976, Autoradiographic studies of the projections of the midbrain reticular formation: Ascending projections of nucleus cuneiformis, J. Comp. Neurol. 165: 417–432.

    PubMed  CAS  Google Scholar 

  • Ferrendelli, J., Steiner, A., McDougal, D., and Kipnis, D., 1970, The effect of oxotremorine and atropine on cGMP and cAMP levels in mouse cerebral cortex and cerebellum, Biochem. Biophys. Res. Commun. 41: 1061–1067.

    CAS  Google Scholar 

  • Fibiger, H. G., 1982, The organization and some projections of cholinergic neurons of the mammalian forebrain, Brain Res. 257: 327–388.

    PubMed  CAS  Google Scholar 

  • Fisher, S. K., Klinger, P. D., and Agranoff, B. W., 1983, Muscarinic agonist binding and phospholipid turnover in brain, J. Biol. Chem. 258: 7358–7363.

    PubMed  CAS  Google Scholar 

  • Fosbraey, P., and Johnson, E. S., 1980, Release-modulating acetylcholine receptors on cholinergic neurones of the guinea pig ileum, Br. J. Pharmacol. 68: 289–300.

    PubMed  CAS  Google Scholar 

  • Gallagher, J. P., and Shinnick-Gallagher, P., 1978, Electrophysiological effects of nucleotides injected intracellularly into rat sympathetic ganglion cells, in: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System ( R. W. Ryall, and J. S. Kelly, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 152–154.

    Google Scholar 

  • George, W., J., Polson, J. B., O’Toole, A. G., and Goldberg, N. D., 1970, Elevation of guanosine 3’,5’-cyclic phosphate in rat heart after perfusion with acetylcholine, Proc. Natl. Acad. Sci. U.S.A. 66: 398–403.

    CAS  Google Scholar 

  • Ginsborg, B. L., House, C. R., and Silinsky, E. M., 1974, Conductance changes associated with secretory potential in the cockroach salivary gland, J. Physiol. (Lond.) 263: 723–731.

    Google Scholar 

  • Haas, H. L., 1982, Cholinergic disinhibition in hippocampal slices of the rat, Brain Res. 233: 200–204.

    PubMed  CAS  Google Scholar 

  • Hadhazy, P., and Szerb, J. C., 1977, The effect of cholinergic drugs on [3H]acetylcholine release from slices of rat hippocampus, striatum and cortex, Brain Res. 123: 311–322.

    PubMed  CAS  Google Scholar 

  • Halliwell, J. V., and Adams, P. R., 1982, Voltage clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250: 71–92.

    PubMed  CAS  Google Scholar 

  • Hamill, O. P., and Sakmann, B., 1981, Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells, Nature 294: 462–464.

    PubMed  CAS  Google Scholar 

  • Hashiguchi, T., Ushiyama, N. S., Kobayashi, H., and Libet, B., 1978, Does cyclic GMP mediate the slow excitatory synaptic potential in sympathetic ganglia? Nature (Lund.) 271: 267–268.

    CAS  Google Scholar 

  • Headley, P. M., Lodge, D., and Biscoe, T. J., 1975, Acetylcholine receptors on Renshaw cells of the rat, Eur. J. Pharmacol. 30: 252–259.

    PubMed  CAS  Google Scholar 

  • Herrling, P. L., 1981, The effect of carbachol and acetylcholine on fornix evoked ipsps recorded from cat hippocampal pyramidal cells in situ, J. Physiol. (Lund.) 318: 26.

    Google Scholar 

  • Hill-Smith, I., and Purves, R. D., 1978, Synaptic delay in the heart: An iontophoretic study, J. Physiol. (Lond.) 279: 31–54.

    CAS  Google Scholar 

  • Hotson, J. R., and Prince, D. A., 1980, A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons J. Neurophysiol. 43: 409–419.

    PubMed  CAS  Google Scholar 

  • Hotson, J. R., Prince, D. A., and Schwartzkroin, P. A., 1979, Anomalous inward rectification in hippocampal neurons, J. Neurophysiol. 42: 889–895.

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., 1978, Presynaptic inhibitory action of acetylcholine in area CA1 of the hippocampus, Ex. Neurol. 62: 787–797.

    CAS  Google Scholar 

  • Jacobson, M. D., Wusteman, M., and Downes, C. P., 1985, Muscarinic receptors and hydrolysis of inositol phospholipids in rat cerebral cortex and parotid gland, J. Neurochem. 44: 465–472.

    PubMed  CAS  Google Scholar 

  • Johnson, S. M., Katayama, Y., Morita, K., and North, R. A., 1981, Mediators of slow synaptic potentials in the myenteric plexus of the guinea pig ileum, J. Physiol. (Lond.) 320: 175–186.

    CAS  Google Scholar 

  • Jordan, L. M., and Phillis, J. W., 1972, Acetylcholine inhibition in the intact and chronically isolated cerebral cortex, Br. J. Pharmacol. Chemother. 45: 584–595.

    CAS  Google Scholar 

  • Katasaka, K., Nakamura, Y., and Hassler, R., 1973, Habenulointerpenduncular tract: A possible cholinergic neuron in rat brain, Brain Res. 62: 264–267.

    Google Scholar 

  • Katayama, Y. and Nishi, S. 1982, Voltage-clamp analysis of peptidergic slow depolarizations in bullfrog sympathetic ganglion cells, J. Physiol. (Lund.) 333: 305–315.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1972, The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. (Lund.) 224: 665–699.

    CAS  Google Scholar 

  • Kebabian, J., Steiner, A., and Greengard, P., 1975, Muscarinic cholinergic regulation of cyclic guanosine 3’5’-monophosphate in autonomic ganglia: Possible role in synaptic transmission, J. Pharmacol. Exp. Ther. 193: 474–487.

    PubMed  CAS  Google Scholar 

  • Kelly, J. S., 1975, Microiontophoretic application of drugs onto single neurones, in: Handbook of Psychopharmacology, Vol. 2 ( L. L. Iversen, S. D. Iversen, and S. Snyder, eds.), Plenum Press, New York, pp. 29–67.

    Google Scholar 

  • Kelly, J. S., Krnjevic, K., Morris, M. E., and Kim, G. K. W., 1969, Anionic permeability of cortical neurones, Exp. Brain. Res. 7: 11–31.

    CAS  Google Scholar 

  • Kilbinger, H., and Wessler, I., 1980, Inhibition of acetylcholine of the stimulation evoked release of]3H]-acetylcholine from the guinea-pig myenteric plexus, Neuroscience 5: 1331–1340.

    PubMed  CAS  Google Scholar 

  • Kimura, H., McGeer, P. L., Peng, J. H., and McGeer, E. G., 1980, Choline acetyltransferase containing neurons in rodent brain demonstrated by immunohistochemistry. Science 208: 1057–1059.

    PubMed  CAS  Google Scholar 

  • King, K. T., and Ryall, R. W., 1981, A re-evaluation of acetylcholine receptors on feline Renshaw cells, Br. J. Pharmacol. 73: 455–460.

    PubMed  CAS  Google Scholar 

  • Kobayashi, H., and Libet, B., 1968, Generation of slow postsynaptic potential without increases in ionic conductance, Proc. Natl. Acad. Sci. U.S.A. 69: 1304–1311.

    Google Scholar 

  • Kobayashi, R. M., Palkovits, M., Hruska, R. E., Rothschild, R., and Yamamura, H. I., 1978, Regional distribution of muscarinic cholinergic receptors in rat brain, Brain Res. 154: 13–23.

    PubMed  CAS  Google Scholar 

  • Kostyuk, P. G., and Krishtal, O. A., 1977, Separation of sodium and calcium currents in the somatic membrane of mollusc neurones, J. Physiol. (I.ond.) 270: 569–580.

    CAS  Google Scholar 

  • Krnjevic, K., 1969, Central cholinergic pathways, Fed. Proc. 28: 113–120.

    CAS  Google Scholar 

  • Krnjevic, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418–540.

    CAS  Google Scholar 

  • Krnjevic, K., and Lisiewicz, A., 1972, Injections of calcium ions into spinal motoneurons, J. Physiol. (Lond.) 225: 363–390.

    CAS  Google Scholar 

  • Krnjevic, K., and Phillis, J. W., 1963a, Acetylcholine sensitive cells in the central cortex, J. Physiol. (Lond.) 166: 296–327.

    CAS  Google Scholar 

  • Krnjevic, K., and Phillis, J. W., 1963b, Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex, J. Physiol. (Lund.) 166: 328–350.

    CAS  Google Scholar 

  • Krnjevic, K., and Ropert, N., 1981, Septo-hippocampal pathway modulates hippocampal activity by a cholinergic mechanism. Can. J. Physiol. Pharmacol. 59: 911–914.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K., and Van Meter, W. G., 1976, Cyclic nucleotides in spinal cells, Can. J. Physiol. Pharmacol. 54: 416–421.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K., Pumain, R., and Renaud, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. (Lund.) 215: 247–268.

    CAS  Google Scholar 

  • Krnjevic, K., Puil, E., and Werman, R., 1976, Is cyclic guanosine monophosphate the internal ‘second messenger’ for cholinergic actions on central neurons ? Can. J. Physiol. Pharmacol. 54: 172–176.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K., Reiffenstein, R. J., and Ropert, N., 1981, Disinhibitory action of acetylcholine in the rat’s hippocampus: Extracellular observations, Neuroscience 6: 2465–2474.

    PubMed  CAS  Google Scholar 

  • Kuba, K., and Koketsu, K., 1974, Ionic mechanism of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells, Brain Res. 81: 338–342.

    PubMed  CAS  Google Scholar 

  • Kuba, K., and Koketsu, K., 1976, Analysis of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells, Jpn. J. Physiol. 26: 647–664.

    Google Scholar 

  • Kuffler, S. W., and Sejnowski, T. J., 1983, Peptidergic and muscarinic excitation at amphibian sympathetic synapses, J. Physiol. (Lond.) 341: 257–278.

    CAS  Google Scholar 

  • Kuhar, M. J., DeHaven, R. N., Yamamura, H. I., Rommelspacher, H., and Simon, J. R., 1975, Further evidence for cholinergic-habenulo-interpeduncular neurons: Pharmacologic and functional characteristics, Brain Res. 97: 265–275.

    PubMed  CAS  Google Scholar 

  • Kuhar, M. J., and Yamamura, H. I., 1976, Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography, Brain Res. 110: 229–243.

    PubMed  CAS  Google Scholar 

  • Lake, N., 1973, Studies of the habenulo-interpeduncular pathway in cats, Exp. Neurol. 41: 113–132.

    CAS  Google Scholar 

  • Lamarre, Y., Filion, M., and Cordeau, J. P., 1971, Neuronal discharges of the ventrolateral nucleus of the thalamus during sleep and wakefulness in the cat. I. Spontaneous activity, Exp. Brain Res. 12: 480–498.

    PubMed  CAS  Google Scholar 

  • Lebranth, C. S., Brownstein, M., Zabrosaky, L., Jaranyi, Z. S., and Palkovits, M., 1975, Morphological and biochemical changes in the rat interpeduncular nucleus following the tran-section of the habenulo-interpeduncular tract, Brain Res. 99: 124–128.

    Google Scholar 

  • Lee, T.-P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3’:5’-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle, Proc. Natl. Acad. Sci. USA 69: 3287–3291.

    PubMed  CAS  Google Scholar 

  • Legge, K. F., Randió, M., and Straughan, D. W., 1966, The pharmacology of neurones in the pyriform cortex, Br. J. Pharmacol. 26: 87–107.

    CAS  Google Scholar 

  • Lehman, J., and Langer, S. Z., 1982, Muscarinic receptors on dopamine terminals in the cat caudate nucleus: Neuromodulation of [3H]dopamine release in vitro by endogenous acetylcholine, Brain Res. 248: 61–69.

    Google Scholar 

  • Lewis, P. R., Shute, C. C. D., and Silver, A., 1967, Confirmation from choline acetylase of a massive cholinergic innervation to the rat hippocampus, J. Physiol. (Land.) 191: 215–224.

    CAS  Google Scholar 

  • Lynch, G., Rose, G., and Gall, C., 1978, Anatomical and functional aspects of the septo-hippocampal projections, in: Functions of the Septo-Hippocampal System, CIBA Foundation Symposium 58 (new series) ( K. Elliot and J. Whelan, eds.) Elsevier, Amsterdam, pp. 5–20.

    Google Scholar 

  • McAfee, D. A., and Greengard, P., 1972, Adenosine 3’,5’-monophosphate: Electrophysiological evidence for a role in synaptic transmission, Science 78: 310–312.

    Google Scholar 

  • McCance, I., 1972, The role of acetylcholine in the intracerebellar nuclei of the cat, Brain Res. 48: 265–279.

    PubMed  CAS  Google Scholar 

  • McCance, I., and Phillis, J. W., 1964, The action of acetylcholine on cells in cat cerebellar cortex, Experientia 20: 217–218.

    PubMed  CAS  Google Scholar 

  • McLennan, H., 1970, Inhibition of long duration in the cerebral cortex, A quantitative difference between excitatory amino acids, Exp. Brain Res. 10: 417–426.

    CAS  Google Scholar 

  • McLennan, H., and York, D. H., 1966, Cholinergic mechanisms in the caudate nucleus, J. Physiol. (Lond.) 187: 163–175.

    CAS  Google Scholar 

  • Magleby, K. L., and Stevens, C. F., 1982, A quantitative description of end-plate currents, J. Physiol. (Lond.) 223: 173–197.

    Google Scholar 

  • Meech, R. W., 1978, Calcium-dependent potassium activation in nervous tissues, Ann. Rev. Biophys. Bioeng. 7: 1–18.

    CAS  Google Scholar 

  • Mesulam, M. M., Mufson, E. J., Wainer, B. H., and Levey, A. I., 1983, Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1-Ch6), Neuroscience 10: 1185–1201.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochem. Biophys. Acta. 415: 81–147.

    CAS  Google Scholar 

  • Morita, K., North, R. A., and Tokimasa, T., 1982a, Muscarinic agonists inactivate potassium conductance of guinea-pig myenteric neurones, J. Physiol. (Land.) 333: 125–139.

    CAS  Google Scholar 

  • Morita, K., North, R. A., and Tokimasa, T., 1982b, Muscarinic presynaptic inhibition of synaptic transmission in myenteric plexus of guinea-pig ileum, J. Physiol. (Land.) 333: 141–149.

    CAS  Google Scholar 

  • Mukhametov, L. M., Rizzolatti, G., and Tradardi, V., 1970, Spontaneous activity of neurones of nucleus reticularis thalami in freely moving cats, J. Physiol. (Lond.) 210: 651–667.

    CAS  Google Scholar 

  • Niedergerke, R., and Page, S., 1977, Analysis of catecholamine effects in single atrial trabeculae of the frog heart, Proc. R. Soc. B. 197: 333–362.

    CAS  Google Scholar 

  • Nishi, S., 1974, Ganglionic transmission, in: The Peripheral Nervous System ( J. I. Hubbard, ed.), Plenum Press, New York, pp. 225–255.

    Google Scholar 

  • Nishi, S., and Koketsu, K., 1960, Electrical properties and activities of single sympathetic neurons in frogs, J. Cell. Comp. Physiol. 55: 15–30.

    PubMed  CAS  Google Scholar 

  • Pearson, R. C. A., Gatter, K. C., Brodal, P., and Powell, T. P. S., 1983, The projection of the basal nucleus of meynert upon the neocortex in the monkey, Brain Res. 259: 132–136.

    PubMed  CAS  Google Scholar 

  • Peng, H. B., Cheng, P.-C., and Luther, P. W., 1981, Formation of ACh receptor clusters induced by positively charged latex beads, Nature 292: 831–834.

    PubMed  CAS  Google Scholar 

  • Pepeu, G., 1983, Brain acetylcholine: An inventory of our knowledge on the 50th anniversary of its discovery, Trends Pharmacol. Sci. 4: 416–418.

    CAS  Google Scholar 

  • Phillis, J. W., 1971, The pharmacology of thalamic and geniculate neurones, Int. Rev. Neurobiol. 14: 1–48.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W., and York, D. H., 1967a, Cholinergic inhibition in the cerebral cortex, Brain Res. 5: 517–520.

    CAS  Google Scholar 

  • Phillis, J W, and York, D. H., 1967b, Strychnine block of neuronal and drug-induced inhibition in the cerebral cortex, Nature 216: 922–923.

    CAS  Google Scholar 

  • Phillis, J. W., and York, D. H., 1968, Pharmacological studies on a cholinergic inhibition in the cerebral cortex, Brain Res. 10: 297–306.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W., Tebècis, A. K., and York, D. H., 1967, A study of cholinoceptive cells in the lateral geniculate nucleus, J. Physiol. (Lund.) 192: 695–713.

    CAS  Google Scholar 

  • Phillis, J. W., Kosopolous, G. K., and Limacher, J. J., 1974, Depression of cortico-spinal cells by various purines and pyrimidines, Can. J. Physiol. Pharmacol. 52: 1226–1229.

    PubMed  CAS  Google Scholar 

  • Polak, R. L., 1970, An analysis of the stimulating action of atropine on release and synthesis of acetylcholine in cortical slices from rat brain, in: Drugs and Cholinergic Mechanism in the CNS ( E. Heilbronn and A. Winter, eds.), Forsvarets Forskningsanstalt, Stockholm, pp. 323–338.

    Google Scholar 

  • Pong, S. F., and Graham, L. T., 1972, N-Methyl bicuculline, a convulsant more potent than bicuculline, Brain Res. 42: 486–490.

    PubMed  CAS  Google Scholar 

  • Purpura, D. P., McMurtry, J. C., Maekawa, R., 1966, Synaptic events in ventrolateral neurons during suppression of recruitory responses by brain stem reticular stimulation, Brain Res. 1: 63.

    PubMed  CAS  Google Scholar 

  • Purves, R. D., 1974, Muscarinic excitation: A microelectric study on cultured muscle cells, Brit. J. Pharmacol. 52: 77–86.

    CAS  Google Scholar 

  • Purves, R. D., 1977, The time course of cellular responses to iontophoretically applied drugs, J. Theoret. Biol. 65: 327–344.

    CAS  Google Scholar 

  • Randic, M., Siminoff, R., and Straughan, D. W., 1964, Acetylcholine depression of cortical neurons, Exp. Neurol. 9: 236–242.

    CAS  Google Scholar 

  • Rang, H. P., 1981, The characteristics of synaptic currents and responses to acetylcholine of rat submandibular ganglion cells, J. Physiol. 311: 23–55.

    PubMed  CAS  Google Scholar 

  • Rogawski, M. A., and Aghajanian, G. K., 1982, Activation of lateral geniculate neurons by locus coeruleus or dorsalinoradrenergic bundle stimulation: Selective blockade by the alpha,adrenoceptor antagonist prazosin, Brain Res. 250: 31–39.

    PubMed  CAS  Google Scholar 

  • Sachs, F., 1983, Is the acetylcholine receptor a unit-conductance channel? in: Single-Channel Recording ( B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 365–376.

    Google Scholar 

  • Sakmann, B., Noma, A., and Trautwein, W., 1983, Acetylcholine activation of single muscarinic K` channels in isolated pacemaker cells of the mammalian heart, Nature 303: 250–253.

    PubMed  CAS  Google Scholar 

  • Salmoiraghi, G. C., and Stefanis, C. N., 1967, A critique of iontophoretic studies of central nervous system neurons, Int. Rev. Neurobiol. 10: 1–30.

    PubMed  CAS  Google Scholar 

  • Salmoiraghi, G. C., and Steiner, F. A., 1963, Acetylcholine sensitivity of cat’s medullary neurons, J. Neurophysiol. 26: 581–597.

    PubMed  CAS  Google Scholar 

  • Sawynok, J., and Jhamandas, K., 1977, Muscarinic feedback inhibition of acetylcholine release from the myenteric plexus in the guinea-pig ileum and its status after chronic exposure to morphine, Can J. Physiol. Pharmacol. 55: 909–916.

    CAS  Google Scholar 

  • Schiebel, M. E., and Schiebel, A. B., 1967, Structural organization of nonspecific thalamic nuclei and their projection towards cortex, Brain Res. 6: 60–94.

    Google Scholar 

  • Schlag, J., and Waszak, M., 1971, Electrophysiological properties of units of the thalami reticular complex, Exp. Neurol. 32: 79–97.

    CAS  Google Scholar 

  • Schulman, J. A., and Weight, F. F., 1976, Synaptic transmission: Long lasting potentiation by a postsynaptic mechanism, Science 194: 1437–1439.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., 1975, Characteristics of CA1 neurons recorded intracellularly in the hippocampal slice, Brain Res. 85: 423–435.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1978, The acetylcholine receptor in the rat hippocampus: Nicotinic, muscarinic or both? Neuropharmacology 17: 619–623.

    PubMed  CAS  Google Scholar 

  • Soejima, M., and Noma, A., 1984, Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells, Pflügers Arch. 400: 424–431.

    PubMed  CAS  Google Scholar 

  • Shepherd, J. T., Lorenz, R. R., Tyce, G. M., and Vanhoutte, P. M., 1978, Acetylcholine-inhibition of transmitter release from adrenergic nerve terminals mediated by muscarinic receptors, Fed. Proc. 37: 191–194.

    CAS  Google Scholar 

  • Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular system: Neocortical, olfactory, and subcortical projections, Brain 90: 497–520.

    PubMed  CAS  Google Scholar 

  • Singer, W., 1973, The effect of mesencephalic reticular stimulation on intracellular potentials of cat geniculate neurons, Brain Res. 61: 35–54.

    PubMed  CAS  Google Scholar 

  • Spehlmann, R., 1963, Acetylcholine and prostigmine electrophoresis at visual cortical neurons, J. Neurophysiol. 26: 127–139.

    PubMed  CAS  Google Scholar 

  • Steriade, M., 1970, Ascending control of thalamic and cortical responsiveness, Int. J. Neurobiol. 12: 87–144.

    CAS  Google Scholar 

  • Stone, T. W., 1972, Cholinergic mechanisms in the rat somatosensory cerebral cortex, J. Physiol. (Lund.) 225: 485–499.

    CAS  Google Scholar 

  • Storm-Mathisen, J., 1975, Choline acetyltransferase and acetylcholine in fascia dentata following lesion of the entorhinal afferents, Brain Res. 80: 181–197.

    Google Scholar 

  • Storm-Mathisen, J., 1977, Localization of transmitter candidates in the brain: The hippocampal formation as a model, Prog. Neurobiol. 8: 119–181.

    CAS  Google Scholar 

  • Straschill, M., and Perwein, J., 1971, Effect of iontophoretically applied biogenic amines and of cholinomimetic substances on neurons in the superior colliculus and mesencephalic reticular formation of the cat, Arch. Cres. Physiol. 324: 43–55.

    CAS  Google Scholar 

  • Symmes, D., and Anderson, K. V., 1967, Reticular modulation of higher auditory centers in monkey, Exp. Neurol. 18: 161–176.

    CAS  Google Scholar 

  • Szerb, J. C., 1980, Effects of low calcium and of oxotremorine on the kinetics of the evoked release of [3H]-acetylcholine from the guinea-pig myenteric plexus: Comparison with morphine, Naunyn Schmiedebergs. Arch. Pharmacol. 311: 119–127.

    CAS  Google Scholar 

  • Takagi, M., and Yamamoto, C., 1978, Suppressing action of cholinergic agents on synaptic transmission in the corpus striatum of rats, Exp. Neurol. 62: 433–443.

    CAS  Google Scholar 

  • Takeuchi, A., and Takeuchi, N., 1959, Active phase of frog’s end-plate potential, J. Neurophysiol. 22: 395–411.

    PubMed  CAS  Google Scholar 

  • Tebécis, A. K., 1972, Cholinergic and non-cholinergic transmission in the medial geniculate nucleus of the cat, J. Physiol. (Lond.), 226: 153–172.

    Google Scholar 

  • Tosaka, T., Chichire, S., and Libet, B., 1968, Intracellular analysis of slow inhibitory and excitatory postsynaptic potentials in sympathetic ganglia of the frog, J. Neurophysiol. 31: 396–409.

    PubMed  CAS  Google Scholar 

  • Trautman, A., and Marty, A., 1984, Activation of Ca-dependent K channels by carbamoylcholine in rat lacrimal glands, Proc. Natl. Acad. Sci. USA 81: 611–615.

    Google Scholar 

  • Vijayan, V. K., 1979, Distribution of cholinergic neurotransmitter enzymes in the hippocampus and the dentate gyrus of the adult and the developing mouse, Neuroscience 4: 137.

    Google Scholar 

  • Wamsley, J. K., Lewis, M. S., Young, W. S., III, and Kuhar, M. J., 1981, Autoradiographic localization of muscarinic cholinergic receptors in rat brainstem, J. Neurosci. 1: 176–191.

    PubMed  CAS  Google Scholar 

  • Waszak, M., 1974, Firing pattern of neurones in the rostral and ventral part of nucleus reticularis thalami during EEG-spindles, Exp. Neurol. 43: 38–59.

    CAS  Google Scholar 

  • Weight, F. F., and Padjen, A., 1973, Acetylcholine and slow synaptic inhibition in frog sympathetic ganglion cells, Brain Res. 55: 225–228.

    PubMed  CAS  Google Scholar 

  • Weight, F. F., and Smith, P. A., 1980, Small intensely fluorescent cells and the generation of slow postsynaptic inhibition in sympathetic ganglia, in: Histochemistry and Cell Biology of Autonomic Neurons, SIF Cells, and Paraneurons, ( O. Eränkö, S. Soinila, and H. Päivärinta, eds.), Raven Press, New York, pp. 159–171.

    Google Scholar 

  • Weight, F. F, and Votava, J., 1970, Slow synaptic excitation in sympathetic ganglion cells: Evidence for synaptic inactivation of potassium conductance, Science 170: 755–758.

    PubMed  CAS  Google Scholar 

  • Weight, F. F. and Salmoiraghi, G. C., 1966, Response of spinal cord interneurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis, J. Pharmacol. Exp. Ther. 153: 420–427.

    PubMed  CAS  Google Scholar 

  • Weight, F. F., Petzold, G., and Greengard, P., 1974, Guanosine 3’5’-monophosphate in sympathetic ganglia; increase associated with synaptic transmission, Science 186: 942–944.

    PubMed  CAS  Google Scholar 

  • Wilson, W., and Goldner, M. A., 1975, Voltage-clamping with a single microelectrode, J. Neurobiol. 4: 411–422.

    Google Scholar 

  • Wong, R. K. S., and Prince, D. A., 1981, Afterpotential generation in hippocampal pyramidal cells, J. Neurophysiol. 45: 86–97.

    PubMed  CAS  Google Scholar 

  • Woody, C. D., Swartz, B. E., and Gruen, E., 1978, Effects of acetylcholine and cyclic GMP on input resistance of cortical neurones in awake cats, Brain Res. 158: 373–395.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C., and Kawai, N., 1967, Presynaptic action of acetylcholine in thin sections from the guinea pig dentate gyrus in vitro, Exp. Neurol. 19: 176–187.

    CAS  Google Scholar 

  • Yavari, P., and Weight, F. F., 1981, Effect of phentolamine on synaptic transmission in bullfrog synpathetic ganglia, Neurosci. Abst. 7: 807.

    Google Scholar 

  • Yingling, C. F., and Skinner, J. F., 1975, Regulation of unit activity in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroenceph. Clin. Neurophysiol. 39: 635–642.

    CAS  Google Scholar 

  • Zieglgänsberger, W., and Reiter, C., 1974, A cholinergic mechanism in the spinal cord of cats, Neuropharmacology 13: 519–527.

    PubMed  Google Scholar 

  • Zieglgänsberger, W., and Bayerl, H., 1976, The mechanism of inhibition of neuronal activity by opiates in the spinal cord of cat, Brain Res. 115: 111–128.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Kelly, J.S., Rogawski, M.A. (1985). Acetylcholine. In: Rogawski, M.A., Barker, J.L. (eds) Neurotransmitter Actions in the Vertebrate Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4961-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4961-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4963-1

  • Online ISBN: 978-1-4684-4961-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics