Skip to main content

Energy Cost of Incubation to the Parent Seabird

  • Chapter
Seabird Energetics

Abstract

Our knowledge of incubation energetics has increased dramatically in the last decade since King (1973) and Kendeigh (1963, 1973) first presented their cost-of-incubation theories. Kendeigh’s model assumes that the heat lost from the egg must be balanced by extra heat production by the parent bird while King argues that the heat produced as a by-product of metabolism could substitute at least part of the heat needed to maintain egg temperature. Much of the recent data on this subject stem from elaborate and extensive studies combining both field and laboratory methods conducted on seabirds nesting on remote oceanic islands. The tameness of the birds, the size of nesting colonies, and the ability to carry Scholander micro-gas analyzers, Haldane apparatus, sensitive balances, and radioactive water to nesting colonies have made such studies posnible. Long fasting periods and long incubation periods of seabirds have facilitated these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biebach, H., 1979, Energetik des Brutens beim Star (Sturnus vulgaris), J. Ornithol., 120: 121.

    Article  Google Scholar 

  • Biebach, H., 1981, Energetic costs of incubation on different clutch sizes in Starlings (Sturnus vulgaris), Ardea, 69:141.

    Google Scholar 

  • Black, C. P., 1975, The ecology and bioenergetics of the Northern Black-throated Blue Warbler (Dendroica caerulescens caerulescens), Unpubl. Ph.D. dissertation. Darmouth College, Hanover, N.H.

    Google Scholar 

  • Brisbin, I. L. Jr., 1969, Bioenergetics of the breeding cycle of the Ring Dove, Auk, 86: 54.

    Google Scholar 

  • Brown, C. R., In press, Resting metabolic rate and energetic cost of incubation in Macaroni Penguins (Eudyptes chrysolophus) and Rockhopper Penguins (E. chrysocome), Comp. Biochem. Physiol.

    Google Scholar 

  • Brown, C. R. and N. J. Adams, In press, Basal metabolic rate and energetic cost of incubation in the Wandering Albatross, (Diomedea exulans), Condor.

    Google Scholar 

  • Cooper, J., 1978, Moult of the Black-footed Penguin Spheniscus demersus, International Zoo Yearbook, 18: 22.

    Article  Google Scholar 

  • Crawford, E. C., Jr. and R. C. Lasiewski, 1968, Oxygen consumption and respiratory evaporation of the Emu and Rhea, Condor, 70: 333.

    Article  Google Scholar 

  • Croxall, J. P., 1982, Energy costs of incubation and moult in petrels and penguins, J. Animal Ecol., 51: 177.

    Article  Google Scholar 

  • Dol’nik, V. R. and V. M. Gavrilov, 1975, A comparison of the seasonal and daily variations of bioenergetics, locomotor activities and major body composition in the sedentary House Sparrow (Passer d. domesticus (L.) and the migratory ‘Hindian’ sparrow (P. d. bactrianus Zar et Kudasch), Ekologia Polska, 23: 211.

    Google Scholar 

  • Drent, R., 1972, Adaptive aspects of the physiology of incubation, Proc. XVth Intern. Ornithol. Congr., p. 255.

    Google Scholar 

  • El-Wailly, A. J., 1966, Energy requirements for egg-laying and incubation in the Zebra Finch, Taeniopygia castanotis, Condor, 68: 582.

    Article  Google Scholar 

  • Fisher, H. I., 1967, Body weights in Laysan Albatrosses, Diomedea immutabilis, Ibis, 109: 373.

    Article  Google Scholar 

  • Flint, E. N. and K. A. Nagy, In press, Flight energetics of free-living Sooty Terns, Auk. Gessaman, J. A. and P. R. Findell, 1979, Energy cost of incubation in the American Kestrel, Comp. Biochem. Physiol., 63A: 57.

    Google Scholar 

  • Grant, G. S. and G. C. Whittow, 1983, Metabolic cost of incubation in the Laysan Albatross and Bonin Petrel, Comp. Biochem. Physiol., 74A: 77.

    Article  CAS  Google Scholar 

  • Groscolas, R. and C. Clement, 1976, Utilisation des reserves energetiques au cours de jeune de la reproduction chez le manchot empereur Aptenodytes fosteri, Comptes Rendus, Academic des Sciences, Paris. Serie D, 282: 297.

    CAS  Google Scholar 

  • Hamilton, K. L. and J. A. Gessaman, 1981, Energetic cost of incubation of the Barn Owl: a preliminary report, Am. Zool., 21: 964.

    Google Scholar 

  • Kendeigh, S. C., 1963, Thermodynamics of incubation in the House Wren, Troglodytes aedon, Proc. Intern. Ornithol. Congr., 13: 884.

    Google Scholar 

  • Kendeigh, S. C., 1973, Discussion, In Breeding Biology of Birds ( D. S. Farner, ed.), pp. 311, Natl. Acad. Sci., Washington, D.C.

    Google Scholar 

  • King, J. R., 1973, Energetics of reproduction in birds. In Breeding Biology of Birds ( D. S. Farner, ed.), pp. 78, Natl. Acad. Sci., Washington, D.C.

    Google Scholar 

  • Lasiewski, R. C. and W. R. Dawson, 1967, A re-examination of the relation between standard metabolic rate and body weight in birds, Condor, 69: 12.

    Article  Google Scholar 

  • LeFebvre, E. A., 1964, The use of D20i8 for measuring energy metabolism in Columba livia at rest and in flight, Auk, 81: 403.

    Google Scholar 

  • Lifson, N., G. B. Gordon, and R. McClintock, 1955, Mnsurement of total carbon dioxide production by means of D2O, J. Appl. Physiol., 7: 704.

    PubMed  CAS  Google Scholar 

  • Lifson, N. and J. S. Lee, 1961, Estimation of material balance of totally fasted rats by doubly labeled water, Am. J. Physiol., 200: 85.

    PubMed  CAS  Google Scholar 

  • MacMillen, R. E., G. C. Whittow, E. A. Christopher, and R. J. Ebisu, 1977, Oxygen consumption, evaporative water loss, and body temperature in the Sooty Tern, Auk, 94: 72.

    Google Scholar 

  • Mertens, J. A. L., 1977, The energy requirements for incubation in Great Tits, Parus major L., Ardea, 65: 184.

    Google Scholar 

  • Mertens, J. A. L., 1980, The energy requirements for incubation in Great Tits and other bird species, Ardea, 68: 185.

    Google Scholar 

  • Mugaas, J. N., 1976, Thermal energy exchange, microclimate analysis, and behavioral energetics of Black-billed Magpies, Pica pica hudsonia, Unpubl. Ph.D. dissertation. Washington State Univ., Pullman.

    Google Scholar 

  • Mugaas, J. N. and J. R. King, 1981, Annual variation of daily energy expenditure by the Black-billed Magpie: A study of thermal and behavior energetics, Studies in Avian Biology No. 5, Cooper Ornithol. Society.

    Google Scholar 

  • Nagy, K. A., 1980, CO production in animals: analysis of potential errors in the doubly labeled water method, Am. J. Physiol., 238: R466.

    PubMed  CAS  Google Scholar 

  • Nagy, K. A. and D. P. Costa, 1980, Water flux in animals: analysis of potential errors in the tritiated water method, Am. J. Physiol., 238: R454.

    PubMed  CAS  Google Scholar 

  • Norton, D. W., 1973, Ecological energetics of calidridine sandpipers breeding in northern Alaska, Unpubl. Ph.D. dissertation, Univ. of Alaska.

    Google Scholar 

  • Rice, D. W. and K. W. Kenyon, 1962, Breeding cycles and behavior of Laysan and Black-footed Albatrosses, Auk, 79: 517.

    Google Scholar 

  • Ricklefs, R. E., 1974, Energetics of reproduction in birds, In Avian Energetics ( R. A. Paynter, ed.) pp. 152, Nuttall Ornithol. Club, Cambridge, MA.

    Google Scholar 

  • Ricklefs, R. E., S. C. White, and J. Cullen, 1980, Energetics of postnatal growth in Leach’s Storm-Petrel, Auk, 97: 566.

    Google Scholar 

  • Riddle, 0. and P. F. Braucher, 1934, Studies on the physiology of reproduction in birds. XXXIII. Body size changes in doves and pigeons incident to stages of the reproductive cycle, Am. J. Physiol., 107: 343.

    Google Scholar 

  • Vleck, C. M., 1981, Energetic cost of incubation in the Zebra Finch, Condor, 83: 229.

    Article  Google Scholar 

  • Walsberg, G. E., 1977, Ecology and energetics of contrasting social systems in Phainopepla nitens (Ayes: Ptilogonatidae), Univ. Calif. Publ. Zool., No. 108.

    Google Scholar 

  • Walsberg, G. E. and J. R. King, 1978a, The heat budget of incubating mountain white-crowned sparrows (Zonotrichia leucophrys oriantha) in Oregon, Physiol. Zool., 51: 92.

    Google Scholar 

  • Walsberg, G. E. and J. R. King, 1977, The energetic consequences of incubation for two passerine species. Auk, 95: 644.

    Google Scholar 

  • West, G. C., 1960, Seasonal variation in the energy balance of the Tree Sparrow in relation to migration, Auk, 77: 306.

    Google Scholar 

  • Withers, P. C., 1977, Energetic aspects of reproduction by the Cliff Swallow, Auk, 94: 718.

    Google Scholar 

  • Williams, A. J., W. R. Siegfried, A. E. Burger, and A. Berruti, 1977, Body composition and energy metabolism of moulting eudyptid penguins, Comp. Biochem. Physiol., 56A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Grant, G.S. (1984). Energy Cost of Incubation to the Parent Seabird. In: Whittow, G.C., Rahn, H. (eds) Seabird Energetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4859-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4859-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4861-0

  • Online ISBN: 978-1-4684-4859-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics