Skip to main content

Photoacoustic Spectroscopy and Related Techniques Applied to Biological Materials

  • Chapter
Photochemical and Photobiological Reviews

Abstract

The absorption of light by living organisms is important both as a probe of biochemical processes at the molecular level, and as the stimulus for myriad photobiological processes. Typically, light absorption may be characterized by measuring either the transmission or the reflectance spectrum; however, most biological systems in situ are not amenable to these measurements due to opacity, scattering, poorly defined or heterogeneous surface properties, etc. Thus, it is of interest to have a technique for measuring the absorption of light that is less constrained by the nature of the material under study. Photoacoustic spectroscopy (PAS) clearly meets this requirement while offering new information that arises uniquely from the combination of spectroscopic and calorimetric phenomena. In certain respects PAS is a qualitative spectroscopic technique, the spectra (except in special cases) are only similar to conventional absorption spectra; also for complex biological samples there is no general method of extracting extinction coefficients or concentrations from the observed signal. On the other hand, photophysical parameters such as quantum yields, lifetimes, and energies, characterizing the various excited states and relaxation pathways of photobiological systems in situ, can sometimes be measured by PAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aamodt, L. C., Murphy, J. C., and Parker, J. G., 1977, Size considerations in the design of cells for photoacoustic spectroscopy, J. Appl. Phys. 48:927–933.

    Article  Google Scholar 

  • Adams, M. J., and Kirkbright, G. F., 1977, Analytical optoacoustic spectroscopy part III. The optoacoustic effect and thermal diffusivity, Analyst 102:281–292.

    Article  Google Scholar 

  • Adams, M. J., Beadle, B. C., King, A. A., and Kirkbright, G. F., 1976, Analytical optoacoustic spectrometry part II. Ultraviolet and visible optoacoustic spectra of some inorganic, biochemical and phytochemical samples, Analyst 101:553–561.

    Article  Google Scholar 

  • Adams, M. J., Highfield, J. G., and Kirkbright, G. F., 1977, Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous medium by optoacoustic spectrometry, Anal. Chem. 49:1850–1852.

    Article  Google Scholar 

  • Adams, M. J., Highfield, J. G., and Kirkbright, G. F., 1980, Determination of the absolute quantum efficiency of luminescence of solid materials employing photoacoustic spectroscopy, Anal. Chem. 52:1260–1264.

    Article  Google Scholar 

  • Adams, M. J., Highfield, J. G., and Kirkbright, G. F., 1981, Determination of the absolute quantum efficiency of sodium salicylate using photoacoustic spectroscopy, Analyst 106:850–854.

    Article  Google Scholar 

  • Arata, H., and Parson, W. W., 1981, Enthalpy and volume changes accompanying electron transfer from P870 to quinones in Rhodopseudomonas sphaeroides reaction centers, Biochim. Biophys. Acta 636:70–81.

    Article  Google Scholar 

  • Arata, H., and Parson, W. W., 1982, Enthalpy and volume changes accompanying electron transfer from P870 to the primary and secondary quinones in photosynthetic reaction centers, in: Function of Quinones in Energy Conserving Systems (B. L. Trumpower, ed.), Academic Press, New York (in press).

    Google Scholar 

  • Balasubramanian, D., and Rao, CH. M., 1981, Yearly Review, Photoacoustic spectroscopy of biological systems, Photochem. Photobiol. 34:749–752.

    Google Scholar 

  • Bechthold, P. S., Kohl, K.-D., and Sperling, W., 1982, Low temperature photoacoustic spectroscopy of the purple membrane of Halobacterium halobium, Appl. Opt. 21:127–132.

    Article  Google Scholar 

  • Bennett, H. S., and Forman, R. A., 1977, Frequency dependence of photoacoustic spectroscopy: Surface-and bulk-absorption coefficients,J. Appl. Phys. 48:1432–1436.

    Article  Google Scholar 

  • Betteridge, D., Lilley, T., and Meyler, P. J., 1979, Computer generated optoacoustic spectra for a two-layer solid sample system, Fresenius Z. Anal. Chem. 296:28–31.

    Article  Google Scholar 

  • Boccara, A. C., Fournier, D., and Badoz, J., 1980a, Thermo-optical spectroscopy: Detection by the “mirage effect,” Appl. Phys. Lett. 36:130–132.

    Article  Google Scholar 

  • Boccara, A. C., Fournier, D., Jackson, W., and Amer, N. M., 1980b, Sensitive photothermal deflection technique for measuring absorption in optically thin media, Opt. Lett. 5:377–379.

    Article  Google Scholar 

  • Boucher, F., and LeBlanc, R. M., 1981, Photoacoustic spectroscopy of cattle visual pigment at low temperature, Biochem. Biophys. Res. Commun. 100:385–390.

    Article  Google Scholar 

  • Bults, G., Horwitz, B. A., Malkin, S., and Cahen, D., 1981, Frequency-dependent photoacoustic signals from leaves and their relation to photosynthesis, FEBS Lett. 129:44–46.

    Article  Google Scholar 

  • Bults, G., Nordal, P.-E., and Kanstad, S. O., 1982, In vivo studies of photosynthesis in attached leaves by means of photothermal radiometry, Biochim. Biophys. Acta 682:234–237.

    Article  Google Scholar 

  • Cahen, D., 1981, Photoacoustic cell for reflection and transition measurements, Rev. Sci. Instrum. 52:1306–1310.

    Article  Google Scholar 

  • Cahen, D., Garty, H., and Caplan, S. R., 1978a, Spectroscopy and energetics of the purple membrane of Halobacterium halobium, FEBS Lett. 91:131–134.

    Article  Google Scholar 

  • Cahen, D., Malkin, S., and Lerner, E. I., 1978b, Photoacoustic spectroscopy of chloroplast membranes; listening to photosynthesis, FEBS Lett. 91:339–342.

    Article  Google Scholar 

  • Cahen, D., Bults, G., Carty, H., and Malkin, S., 1980, Photoacoustics in life sciences, J. Biochem. Biophys. Methods 3:293–310.

    Article  Google Scholar 

  • Callis, J. B., 1976, The calorimetric detection of excited states, J. Res. Nat. Bur. Stand. 80A:413–419.

    Google Scholar 

  • Callis, J. B., Parson, W. W., andGouterman, M., 1972, Fast changes of enthalpy and volume on flash excitation of Chromatium chromatophores, Biochim. Biophys. Acta. 267:348–362.

    Article  Google Scholar 

  • Campbell, S. D., Yee, S. S., and Afromowitz, M. A., 1977, Two applications of photoacoustic spectroscopy to measurements in dermatology, J. Bioeng. 1:185–188.

    Google Scholar 

  • Campbell, S. D., Yee, S. S., and Afromowitz, M. A., 1979, Application of photoacoustic spectroscopy to problems in dermatology research, IEEE Trans. Biomed. Eng. EME-26:220–227.

    Article  Google Scholar 

  • Canaani, O., Cahen, D., and Malkin, S., 1982, Photosynthetic chromatic transitions and Emerson enhancement effects in intact leaves studied by photoacoustics, FEBS Lett. 150:142–146.

    Article  Google Scholar 

  • Castleden, S. L., Elliott, C. M., Kirkbright, G. F., and Spillane, D. E. M., 1979, Quantitative examination of thin-layer chromatography plates by photoacoustic spectroscopy, Anal. Chem. 51:2152–2153.

    Article  Google Scholar 

  • Chalmers, J. M., Stay, B. J., Kirkbright, G. F., Spillane, D. E., and Beadle, B. C., 1981, Some observations on the capabilities of photoacoustic Fourier transform infrared spectroscopy (PAFTIR), Analyst 106:1179–1186.

    Article  Google Scholar 

  • Ducharme, D., Tessier, A., and LeBlanc, R. M., 1979, Design and characteristics of a cell for photoacoustic spectroscopy of condensed matter. Rev. Sci. Instrum. 50:1461–1462.

    Article  Google Scholar 

  • Fernelius, N. C., 1980, Extension of the Rosencwaig-Gersho photoacoustic spectroscopy theory to include effects of a sample coating,J. Appl. Phys. 51:650–654.

    Article  Google Scholar 

  • Fishman, V. A., and Bard, A. J., 1981, Open-ended photoacoustic spectroscopy cell for thin-layer chromatography and other applications, Anal. Chem. 53:102–105.

    Article  Google Scholar 

  • Fournier, D., Boccara, A. C., and Badoz, J., 1978, Dichroism measurements in photoacoustic spectroscopy, Appl. Phys. Lett. 32:640–642.

    Article  Google Scholar 

  • Fuchsman, W. H., and Silversmith, A. J., 1979, General method for overcoming photoacoustic saturation in highly colored organic and inorganic solids, Anal. Chem. 51:589–590.

    Article  Google Scholar 

  • Garty, H., Cahen, D., and Caplan, S. R., 1978, Use of photoacoustic spectroscopy in the study of the bioenergetics of purple membranes, in: Energetics and Structure of Halophilic Microorganisms, (S. R. Caplan and M. Ginzburg, eds.), pp. 253–259, Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Garty, H., Cahen, D., and Caplan, S. R., 1980, Photoacoustic calorimetry of Halobacierium halobium photocycle, Biochem. Biophys. Res. Commun. 97:200–206.

    Article  Google Scholar 

  • Garty, H., Caplan, S. R., and Cahen, D., 1981, Photoacoustic photocalorimetry and spectroscopy of Halobacterium halobium purple membranes, Biophys. J. 37:405–415.

    Article  Google Scholar 

  • Gray, R. C., Fishman, V. A., and Bard, A. J., 1977, Simple sample cell for examination of solids and liquids by photoacoustic spectroscopy, Anal. Chem. 49:697–700.

    Article  Google Scholar 

  • Helander, P., Lundström, I., and McQueen, D., 1981, Photoacoustic study of layered samples, J. Appl. Phys. 52:1146–1151.

    Article  Google Scholar 

  • Inoue, Y., Watanabe, A., and Shibata, K., 1979, Transient variation of photoacoustic signal from leaves accompanying photosynthesis, FEBS Lett. 101:321–323.

    Article  Google Scholar 

  • Kanstad, S. O., Nordal, P. E., Hellgren, L., and Vincent, J., 1981, Infrared photoacoustic spectroscopy of skin lipids, Naturwissenschaften 68:47–48.

    Article  Google Scholar 

  • Kanstad, S. O., Cahen, D., and Malkin, S., 1983, Simultaneous detection of photosynthetic energy storage and oxygen evolution in leaves by photothermal radiometry and pho-toacoustics, Biochim. Biophys. Acta 722:182–189.

    Article  Google Scholar 

  • Krishnan, K., 1981, Some applications of Fourier transform infrared photoacoustic spectroscopy, Appl. Spectrosc. 35:549–557.

    Article  Google Scholar 

  • Lasser-Ross, N., Malkin, S., and Cahen, D., 1980, Photoacoustic detection of photosynthetic activities in isolated broken chloroplasts, Biochim. Biophys. Acta 593:330–341.

    Article  Google Scholar 

  • Lerman, S., Yamanashi, B. S., Palmer, R. A., Roark, J. C., and Borkman, R., 1978, Photoacoustic, fluoresence and light transmission spectra of normal, aging and cataractous lenses, Ophthalmic Res. 10:168–176.

    Article  Google Scholar 

  • Lin, J. W., and Dudek, L. P., 1979, Signal saturation effect and analytical techniques in photoacoustic spectroscopy of solids, Anal. Chem. 51:1627–1632.

    Article  Google Scholar 

  • Lloyd, L. B., Burnham, R. K., Chandler, W. L., Eyring, E. M., and Farrow, M. M., 1980, Fourier transform photoacoustic visible spectroscopy of solids and liquids, Anal. Chem. 52:1595–1598.

    Article  Google Scholar 

  • Mackenthun, M. L., Tom, R. D., and Moore, T. A., 1979, Lobster shell carotenoprotein organization in situ studied by photoacoustic spectroscopy, Nature 279:265–266.

    Article  Google Scholar 

  • Malkin, S., and Cahen, D., 1979, Photoacoustic spectroscopy and radiant energy conversion: Theory of the effect with special emphasis on photosynthesis, Photochem. Photobiol. 29:803–813.

    Article  Google Scholar 

  • Malkin, S., and Cahen, D., 1981, Dependence of photoacoustic signal on optical absorption coefficient in optically dense liquids, Anal. Chem. 53:1426–1432.

    Article  Google Scholar 

  • Mandelis, A., Teng, Y. C., and Royce, B. S. H., 1979, Phase measurements in the frequency domain photoacoustic spectroscopy of solids, J. Appl. Phys. 50:7138–7146.

    Article  Google Scholar 

  • Maugh, T. H. II, 1980, Fourier transform comes to photoacoustic spectroscopy, Science 208:167.

    Article  Google Scholar 

  • McClelland, J. F., and Kniseley, R. N., 1976, Signal saturation effects in photoacoustic spectroscopy with applicability to solid and liquid samples, Appl. Phys. Lett. 28:467–469.

    Article  Google Scholar 

  • McDonald, F. A., 1980, Three-dimensional heat flow in the photoacoustic effect, Appl. Phys. Lett. 36:123–125.

    Article  Google Scholar 

  • McDonald, F. A., 1981, Three-dimensional heat flow in the photoacoustic effect-II: Cell-wall conduction, J. Appl. Phys. 52:381–385.

    Article  Google Scholar 

  • McDonald, F. A., and Wetsel, G. C. Jr., 1978, Generalized theory of the photoacoustic effect, J. Appl. Phys. 49:2313–2322.

    Article  Google Scholar 

  • Moore, T. A., Benin, D., and Tom, R., 1982, Photoacoustic measurement of photophysical properties. Lowest triplet state energy of a free base prophyrin, J. Am. Chem. Soc. 104:7356–7357.

    Article  Google Scholar 

  • Monta, M., 1981, Theory and experiments on the photoacoustic effect in double-layer solids, Jpn. J. Appl. Phys. 20:835–842.

    Article  Google Scholar 

  • Murphy, J. C., and Aamodt, L. C., 1977, Photoacoustic spectroscopy of luminescent solids: Ruby, J. Appl. Phys. 48:3502–3509.

    Article  Google Scholar 

  • Nordal, P.-E., and Kanstad, S. O., 1979, Photothermal radiometry, Physica Scripta 20:659–662.

    Article  Google Scholar 

  • Nordal, P.-E., and Kanstad, S. O., 1981, Visible-light spectroscopy by photothermal radiometry using an incoherent source, Appl. Phys. Lett. 38:486–488.

    Article  Google Scholar 

  • O’Hara, E. P., Tom, R., and Moore, T. A., 1981, Absorption of light by pigments in lichens studied by photoacoustic spectroscopy, Technical Digest, Second International Topical Meeting on Photoacoustic Spectroscopy, June 22–25, 1981, Optical Society of America, Washington, D.C. Abs. Tu B29.

    Google Scholar 

  • Ort, D. R., and Parson, W. W., 1978, Flash-induced volume changes of bacteriorhodopsin-containing membrane fragments and their relationship to proton movements and absorption transients, J. Biol. Chem. 253:6158–6164.

    Google Scholar 

  • Ort, D. R., and Parson, W. W., 1979a, The quantum yield of flash-induced proton release by bacteriorhodopsin-containing membrane fragments, Biophys. J. 25:341–354.

    Article  Google Scholar 

  • Ort, D. R., and Parson, W. W., 1979b, Enthalpy changes during the photochemical cycle of bacteriorhodopsin, Biophys. J. 25:355–364.

    Article  Google Scholar 

  • Ortner, P. B., and Rosencwaig, A., 1977, Photoacoustic spectroscopic analysis of marine phytoplankton, Hydrobiologia 56:3–6.

    Article  Google Scholar 

  • Palmer, R. A., Roark, J. C., Robinson, J. C., and Howell, J. L., 1979, Photoacoustic detection of natural circular dichroism in solids, Technical Digest, Topical Meeting on Photoacoustic Spectroscopy, August 1–3, 1979, Optical Society of America, Washington, D.C. Abs. ThA 3–l.

    Google Scholar 

  • Pichon, C., LeLiboux, M., Fournier, D., and Boccara, A. C., 1979, Variable-temperature photoacoustic effect: Application to phase transition, Appl. Phys. Lett. 35:435–437.

    Article  Google Scholar 

  • Pines, E., 1978, A new technique to assess sunscreen effectiveness, J. Soc. Cosmet. Chem. 29:559–564.

    Google Scholar 

  • Poulet, P., Chambron, J., and Unterreiner, R., 1980, Quantitative photoacoustic spectroscopy applied to thermally thick samples, J. Appl. Phys. 51:1738–1742.

    Article  Google Scholar 

  • Quimby, R. S., and Yen, W. M., 1979, Three-dimensional heat-flow effects in photoacoustic spectroscopy of solids, Appl. Phys. Lett. 35:43–45.

    Article  Google Scholar 

  • Quimby, R. S., and Yen, W. M., 1980, Photoacoustic measurement of the ruby quantum efficiency,J. Appl. Phys. 51:1780–1782.

    Article  Google Scholar 

  • Renard, M., and Delmelle, M., 1980, Quantum efficiency of light-driven proton extrusion in Halobacterium halobium, Biophys. J. 32:993–1006.

    Article  Google Scholar 

  • Renard, M., and Delmelle, M., 1981, The photochemical quantum yield of bacteriorhodopsin in pH independent, FEBS Lett. 128:245–248.

    Article  Google Scholar 

  • Rockley, M. G., Davis, D. M., and Richardson, H. H., 1980, Fourier transformed infrared photoacoustic spectroscopy of biological materials, Science 210:918–920.

    Article  Google Scholar 

  • Rosencwaig, A., 1978, Photoacoustic spectroscopy, Adv. Electr. Electron Phys. 46:207–311.

    Google Scholar 

  • Rosencwaig, A., and Gersho, A., 1976, Theory of photoacoustic effect with solids, J. Appl. Phys. 47:64–69.

    Article  Google Scholar 

  • Rosencwaig, A., and Pines, E., 1977a, A photoacoustic study of newborn rat stratum cor-neum, Biochim. Biophys. Acta 493:10–23.

    Google Scholar 

  • Rosencwaig, A., and Pines, E., 1977b, Stratum corneum studies with photoacoustic spectroscopy, J. Invest. Dermatol. 69:296–298.

    Article  Google Scholar 

  • Saxe, J. D., Faulkner, T. R., and Richardson, F. S., 1979, photoacoustic detection of circular dichroism, Chem. Phys. Lett. 68:71–76.

    Article  Google Scholar 

  • Schneider, S., Möller, U., and Coufal, H., 1982, Influence of photoinduced isomerization on the photoacoustic spectra of DODCI, Appl. Opt. 21:44–48.

    Article  Google Scholar 

  • Smith, K. C., 1977, New topics in photobiology, in: The Science of Photobiology, (K. C. Smith, ed.), pp. 397–417, Plenum, N.Y.

    Chapter  Google Scholar 

  • Somoano, R. B., 1978, Photoacoustic spectroscopy of condensed matter, Angew. Chem. Int. Ed. Engl. 17:238–245.

    Article  Google Scholar 

  • Tilgner, R., 1981, Photoacoustic spectroscopy with light scattering samples, Appl. Opt. 20:3780–3786.

    Article  Google Scholar 

  • Tom, R. D., O’Hara, E. P., and Benin, D., 1982, A generalized model of photothermal radiometry, J. Appl. Phys. 53:5392–5400.

    Article  Google Scholar 

  • Yoon, G. J., Lee, T. Y., O’Hara, E. P., Moore, T. A., Yoon, M., and Song, P. S., 1981, The spectroscopy of Porphyra Sp. in situ, Can. J. Spectrosc. 26:148–157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Moore, T.A. (1983). Photoacoustic Spectroscopy and Related Techniques Applied to Biological Materials. In: Smith, K.C. (eds) Photochemical and Photobiological Reviews. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4505-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4505-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4507-7

  • Online ISBN: 978-1-4684-4505-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics