Skip to main content

Adaptive Radiation of Mechanoreception

  • Chapter
Sensory Ecology

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 18))

Abstract

Sensitivity to mechanical energy is a fundamental characteristic of living systems, from single cells to complex organisms, a sensitivity no less ubiquitous than that to thermal energy or radiation. There are, however, vast differences in reception thresholds and in filtering properties of the mechanoreceptive systems depending on the accessory structures which first accept the stimulus and transmit it to the sensory elements, more often than not transforming it on its way to them, until finally transduction from mechanical stimulus energy to excitation of the sensory cell membrane occurs (Burkhardt, 1960). These processes determine, together with the response characteristics of the sensory cells, to which specific form of mechanical energy a system is sensitive, whether sensitivity is directionally polarized or not and what the difference thresholds are for stimulus changes in the time and in the intensity domains. Central processing of the mechanoreceptive excitation can further affect the mechanoreceptive properties of the whole organism, e.g. by allowing to localize stimulus direction by comparing the input from several spatially distributed sense organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arntz, B. (1971). Sinnesphysiologische Untersuchungen beim Beutefangverhalten von Nepa cinerea Linné. Diplomarbeit, Math. Naturwiss. Fak. Univ. Bonn.

    Google Scholar 

  • Arntz, B. (1975). Das Hörvermögen von Nepa cinerea L. Zur Funktionsweise der thorakalen Skolopidialorgane. J. Comp. Physiol. 96, 53–72.

    Article  Google Scholar 

  • Bässler, U. (1965). Proprioreceptoren am Subcoxal und Femur-Tibia-Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung. Kybernetik 2, 168–193.

    Google Scholar 

  • Baunacke, W. (1912). Statische Sinnesorgane bei Nepiden. Zool. Jahrb. Anat. 34, 179–342.

    Google Scholar 

  • Bischof, H.-J. (1974). Verteilung und Bewegungsweise der keulenförmigen Sensillen von Gryllus bimaculatus Deg. Biol. Zentralblatt 93, 449–457.

    Google Scholar 

  • Bischof, H.-J. (1975). Die keulenförmigen Sensillen auf den Cerci der Grille Gryllus bimaculatus als Schwererezeptoren. J. Comp. Physiol. 98, 277–288.

    Article  Google Scholar 

  • Bonke, D. (1975a). Der Bau und die Antwortcharakteristik des Schirmrezeptors aus dem Statoorgansystem von Nepa cinera L. (Hemiptera, Rhynchota). Verh. Dtsch. Zool. Ges. 1974, p. 42–45.

    Google Scholar 

  • Bonke, D. (1975b). Feinstruktur und Funktionsweise der statischen Sinnesorgane von Nepiden (Hemiptera). Diss. Techn. Hochschule Darmstadt.

    Google Scholar 

  • Brownell, Ph.H. (1977). Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197, 479–482.

    Article  PubMed  Google Scholar 

  • Budelmann, B.-U. (1970). Die Arbeitsweise der Statolithenorgane von Octopus vulgaris. Z. Vergl. Physiol. 70, 278–312.

    Article  Google Scholar 

  • Budelmann, B.-U. (1975). Gravity receptor function in cephalopods with particular reference to Sepia officinalis. Fortschritte Zool. 23, 84–96.

    Google Scholar 

  • Budelmann, B.-U. (1976). Equilibrium receptor systems in molluscs. In: Structure and Function of Proprioceptors in the Invertebrates. P.J. Mill (Ed.), Chapman & Hall, London, p. 529–566.

    Google Scholar 

  • Budelmann, B.-U. (1977). Structure and function of the angular acceleration receptor systems in the statocysts of cephalopods. Symp. Zool. Soc. London 38, 309–324.

    Google Scholar 

  • Budelmann, B.-U. and Thies, G. (1977). Secondary sensory cells in the gravity receptor system of the statocyst of Octopus vulgaris. Cell. Tiss. Res. 182, 93–98.

    Article  Google Scholar 

  • Budelmann, B.-U. and Wolff, H.G. (1973). Gravity response from angular acceleration receptors in Octopus vulgaris. J. Comp. Physiol. 85, 283–290.

    Article  Google Scholar 

  • Burkhardt, D. (1960). Die Eigenschaften und Funktionstypen der Sinnesorgane. Ergebnisse Biol. 22, 226–267.

    Article  Google Scholar 

  • Cahn, Ph.H. (Ed.) (1967). Lateral line detectors. Indiana University Press, Bloomington.

    Google Scholar 

  • Cohen, M.J. and Dijkgraaf, S. (1961). Mechanoreception. In: T.H. Waterman (Ed.). The Physiology of Crustacea. Vol. 2, 65–108. Academic Press, New York.

    Google Scholar 

  • Dijkgraaf, S. (1934). Untersuchungen Uber die Funktion der Seitenorgane an Fischen. Z. Vergl. Physiol. 20, 162–214.

    Article  Google Scholar 

  • Dijkgraaf, S. (1963). The functioning and significance of the lateral line organs. Biol. Rev. 38, 51–105.

    Article  PubMed  Google Scholar 

  • Darslar, K. (1973). Functional properties of trichobothria in the bug Pyrrhoooris apterus (L.). J. Comp. Physiol. 84, 175–184.

    Article  Google Scholar 

  • Eckert, R. (1972). Bioelectric control of ciliary activity. Science 176, 473–481.

    Article  PubMed  Google Scholar 

  • Edwards, J.S. and Palka, J. (1974). The cerci and abdominal giant fibers of the house cricket, Aoheta domestious. I. Anatomy and physiology of normal adults. Proc. R. Soc. London B, 185, 83–103.

    Article  Google Scholar 

  • Flock, Ä. (1965). Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta oto-laryng. (Stockh.) Suppl. 199, 1–90.

    Google Scholar 

  • Flock, S. (1971). Sensory transduction in hair-cells. In: W.R. Loewenstein (Ed.): Handbook of Sensory Physiology I, p. 396–441, Springer Verlag, Berlin.

    Google Scholar 

  • Fräser, P.J. (1974). Interneurons in crab connectives (Carcinus maenas (L.)): directional statocyst fibers. J. Exp. Biol. 61, 615–628.

    PubMed  Google Scholar 

  • Fräser, P.J. and Sandeman, D.C. (1975). Effects of angular and linear accelerations on semicircular canal interneurons of the crab Scylla serrata. J. Comp. Physiol. 96, 205–221.

    Article  Google Scholar 

  • Gaffal, K.P., Tichy, H., Theiss, J. and Seelinger, G. (1975). Structural polarities in mechano-sensitive sensilla and their influence on stimulus transmission (Arthropoda). Zoomorphologie 82, 79–103.

    Article  Google Scholar 

  • Gnatzy, W. und Schmidt, K. (1971). Die Feinstruktur der Sinneshaare auf den Cerci von Gvyllus bimaoulatus Deg. (Saltatoria, Gryllidae). I. Faden- und Keulenhaare. Zeitschr. Zellforsch. 122, 190–209.

    Article  Google Scholar 

  • Görner, P. (1966). A proposed transducing mechanism for a multiply-innervated mechanoreceptor (trichobothrium) in spiders. Cold Spring Harbor Symp. Quant. Biol. 30, 69–73.

    Article  Google Scholar 

  • Görner, P. und Andrews, P. (1969). Trichobothrien, ein Ferntastsinnesorgan bei Webspinnen (Araneen). Z. Vergl. Physiol. 64, 301–317.

    Article  Google Scholar 

  • Gordon, S.A. and Cohen, M.J. (Eds.) (1971). Gravity and the Organism. University of Chicago Press, Chicago.

    Google Scholar 

  • Harris, G.G. (1964). Considerations on the physics of sound production by fishes. In: W.N. Tavolga (Ed.): Marine Bio- Acoustics p. 233–247. Pergamon Press, Oxford.

    Google Scholar 

  • Harris, G.G. and van Bergeijk, W.A. (1962). Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J. Acoust. Soc. Amer. 34, 1831–1841.

    Article  Google Scholar 

  • Haskell, P.T. (1956). Hearing in certain Orthoptera. I. II. J. Exp. Biol. 33, 756-766; 767–776.

    Google Scholar 

  • Horn, E. (1970). Die Schwerkraftreception bei der Geotaxis des laufenden Mehlkäfers (Tenebirlo molitov). Z. Vergl. Physiol. 66, 343–354.

    Article  Google Scholar 

  • Horn, E. (1973). Die Verarbeitung des Schwerereizes bei der Geotaxis der höheren Bienen (Apidae). J. Comp. Physiol. 82, 379–406.

    Article  Google Scholar 

  • Horn, E. (1975). Mechanisms of gravity processing by leg and abdominal gravity receptors in bees. J. Insect. Physiol. 21, 673–679.

    Article  Google Scholar 

  • Horn, E. (1975). The contribution of different receptors to gravity orientation in insects. Fortschritte Zool. 23, 1–20.

    Article  Google Scholar 

  • Horn, E. and Kessler, W. (1975). The control of antennal lift movements and its importance on the gravity reception in the walking blowfly, Calliphora eitkrooephaLa. J. Comp. Physiol. 97, 189–203.

    Article  Google Scholar 

  • Horridge, G.A. (1966). Some recently discovered underwater vibration receptors in invertebrates. In: H. Barnes (Ed.): Some Contemporary Studies in Marine Science, p. 395–405. Allen and Unwin, London.

    Google Scholar 

  • Horridge, G.A. (1969). Statocysts of medusae and evolution of stereocilia. Tissue and Cell 1, 341–353.

    Article  PubMed  Google Scholar 

  • Horridge, G.A. (1971). Primitive examples of gravity receptors and their evolution. In: S. Gordon and M.J. Cohen (Eds.): Gravity and the Organism, p. 203–221. University of Chicago Press, Chicago.

    Google Scholar 

  • Horridge, G.A. and Boulton, P.S. (1967). Prey detection by Chaetognatha via a vibration sense. Proc. Roy. Soc. B. 168, 413–419.

    Article  Google Scholar 

  • Hudspeth, A.J. and Corey, D.P. (1977). Sensitivity, polarity, and conductance change in the response of vertebrate hair-cells to controlled mechanical stimuli. Proc. Natl. Acad. Sei. USA 74, 2407–2411.

    Article  Google Scholar 

  • Jander, R., Horn, E. and Hoffmann, M. (1970). Die Bedeutung von Gelenkrezeptoren in den Beinen für die Geotaxis der höheren Insekten (Pterygota). Z. Vergl. Physiol. 66, 326–342.

    Article  Google Scholar 

  • Katsuki, Y. and Suga, N. (1960). Neural mechanisms of hearing in insects. J. Exp. Biol. 37, 279–290.

    Google Scholar 

  • Klinke, R. and Galley, N. (1974). Efferent innervation of vestibular and auditory receptors. Physiol. Reviews 54, 316–357.

    Google Scholar 

  • Klinke, R. and Schmidt, C.L. (1970). Efferent influence of the vestibular organ during active movement of the body. Arch. Ges. Physiol. 318, 325–332.

    Article  Google Scholar 

  • Kolle-Kralik, U. und Ruff, P.W. (1967). Vibrotaxis von Amoeba proteus (Pallas) im Vergleich mit der Cicilienschlagfrequenz der Beutetiere. Protistologica 3, 319–323.

    Google Scholar 

  • Krisch, B. (1973). Uber das Apikaiorgan (Statocyste) der Ctenophore Pleurobrachia pileus. Zeitschr. Zellforsch. 142, 241–262.

    Article  Google Scholar 

  • Lang, H. (1977). Mechanismen der Beuteerkennung und der intraspezifischen Kommunikation bei der räuberischen Wasserwanze Notoneota glauea L. und ihre Rolle bei der Aufrechterhaltung der Populationsstruktur. Diss. Universität Konstanz.

    Google Scholar 

  • Laverack, M.S. (1962a). Responses of cuticular sense organs of the lobster Homarus vulgaris (Crustacea). I. Hair-peg organs as water-current receptors. Comp. Biochem. Physiol. 5, 319–325.

    Article  Google Scholar 

  • Laverack, M.S. (1962b). Responses of cuticular sense organs of the lobster Homarus vulgaris (Crustacea). II. Hair-fan organs as pressure receptors. Comp. Biochem. Physiol. 6, 137–145.

    Article  Google Scholar 

  • Lindauer, M. und Nedel, J.O. (1959). Ein Schweresinnesorgan der Honigbiene. Z. Vergl. Physiol. 42, 334–364.

    Article  Google Scholar 

  • Lowenstein, O.E. (1974). Comparative Morphology and Physiology. In: H.H. Kornhuber (Ed.): Handbook of Sensory Physiology Vol. VI/1 p. 75–120, Springer Verlag, Berlin.

    Google Scholar 

  • Machemer, H. (1977). Motor activity and bioelectric control of cilia. Fortschritte Zool. 24, 195–210.

    Google Scholar 

  • Machemer, H. and de Peyer, J. (1977). Swimming sensory cells: Electrical membrane parameters, receptor properties, and motor control in ciliated Protozoa. Verh. Dtsch. Zool. Ges. 1977, p. 86–110.

    Google Scholar 

  • Markl, H. (1962). Borstenfelder an den Gelenken als Schweresinne-sorgane bei Ameisen und anderen Hymenopteren. Z. Vergl. Physiol. 45, 475–569.

    Article  Google Scholar 

  • Markl, H. (1964). Geomenotaktische Fehlorientierung bei Formica polyctena Foerster. Z. Vergl. Physiol. 48, 552–586.

    Google Scholar 

  • Markl, H. (1966a). Schwerkraftdressuren an Honigbienen. I. Die geomenotaktische Fehlorientierung. Z. Vergl. Physiol. 53, 328–352.

    Article  Google Scholar 

  • Markl, H. (1966b). Schwerkraftdressuren an Honigbienen. II. Die Rolle der schwererezeptorischen Borstenfelder verschiedener Gelenke für die Schwerekompassorientierung. Z. Vergl. Physiol. 53, 353–371.

    Article  Google Scholar 

  • Markl, H. (1969). Die Verständigung durch Stridulationssignale bei Ameisen. II. Erzeugung und Eigenschaften der Signale. Z. Vergl. Physiol. 60, 103–150.

    Article  Google Scholar 

  • Markl, H. (1971). Proprioceptive gravity perception in Hymenoptera. In: S. Gordon and M.J. Cohen (Eds.): Gravity and the Organism, p. 185–194. University of Chicago Press, Chicago.

    Google Scholar 

  • Markl, H. (1973). Leistungen des Vibrationssinnes bei wirbellosen Tieren. Fortschritte Zool. 21, 100–120.

    Google Scholar 

  • Markl, H. (1974). The perception of gravity and of angular acceleration in invertebrates. In: H.H. Kornhuber (Ed.): Hand-book of Sensory Physiology, Vol. VI/1, p. 17–74, Springer Ver-lag, Berlin.

    Google Scholar 

  • Markl, H. and Tautz, J. (1975). The sensitivity of hair receptors in caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae) to particle movement in a sound field. J. Comp. Physiol. 99, 79–87.

    Article  Google Scholar 

  • Mellon, D. (1963). Electrical responses from dually innervated tactile receptors on the thorax of the crayfish. J. Exp. Biol. 40, 137–148.

    Google Scholar 

  • Melvill Jones, G. (1974). The functional significance of semi-circular canal size. In: H.H. Kornhuber (Ed.): Handbook of Sensory Physiology Vol. VI/1, p. 171–184, Springer Verlag, Berlin.

    Google Scholar 

  • Minnich, D.E. (1925). The reactions of the larvae of Vanessa antiopa L. to sounds. J. Exp. Zool. 42, 443–469.

    Article  Google Scholar 

  • Minnich, D.E. (1936). The responses of caterpillars to sound. J. Exp. Zool. 72, 439–453.

    Article  Google Scholar 

  • Moran, D.T. and Carter Rowley III, J. (1975). High voltage and scanning electron microscopy of the site of stimulus reception of an insect mechanoreceptor. J. Ultrastruct. Res. 50, 38–46.

    Article  PubMed  Google Scholar 

  • Murphey, R.K. and Mendenhall, B. (1973). Localization of receptors controlling orientation to prey by the back swimmer Notonecta undulata. J. Comp. Physiol. 84, 19–30.

    Article  Google Scholar 

  • Naitoh, Y. and Eckert, R. (1974). The control of ciliary activity in Protozoa. In: M.A. Sleigh (Ed.): Cilia and Flagella. p. 305–352. Acad. Press, London.

    Google Scholar 

  • Offutt, G.C. (1970). Acoustic stimulus perception by the american lobster, Homarus americanus (Decapoda). Experientia 26, 1276–1278.

    Article  PubMed  Google Scholar 

  • Petrovskaya, E.D., Rojkova, G.J. and Tokareva, V.S. (1970). Single cercal receptor characteristics in the cricket (Gryllus domestious). (Russ. with Engl. Summary). Biofizika 15, 1112–1119.

    Google Scholar 

  • Piddington, R.W. (1971a). Central control of auditory input in the goldfish. I. Effect of shocks to the midbrain. J. Exp. Biol. 55, 569–584.

    PubMed  Google Scholar 

  • Piddington, R.W. (1971b). Central control of auditory input in the goldfish. II. Evidence of action in the free-swimming animal. J. Exp. Biol. 55, 585–610.

    PubMed  Google Scholar 

  • Pumphrey, R.J. and Rawdon-Smith, A.F. (1936). Hearing in insects: the nature of the response of certain receptors to auditory stimuli. Proc. Roy. Soc. B 121, 18–27.

    Article  Google Scholar 

  • Roberts, B.L. and Russell, I.J. (1972). The activity of lateral- line efferent neurones in stationary and swimming dogfish. J. Exp. Biol. 57, 435–448.

    PubMed  Google Scholar 

  • Russell, I.J. (1971). The role of efferent fibres in the lateral- line system of Xenopus laevis. J. Exp. Biol. 54, 621–641.

    PubMed  Google Scholar 

  • Russell, I.J. and Roberts, B.L. (1972). Inhibition of spontaneous lateral-line activity by efferent nerve stimulation. J. Exp. Biol. 57, 77–82.

    Google Scholar 

  • Sandeman, D.C. (1975). Dynamic receptors in the statocysts of crabs. Fortschritte Zool. 23, 185–191.

    Article  Google Scholar 

  • Sandeman, D.C. (1976). Spatial equilibrium in the arthropods. In: P.J. Mill (Ed.): Structure and Function of Proprioceptors in the Invertebrates, p. 485–527. Chapman and Hall, London.

    Google Scholar 

  • Sandeman, D.C. and Okajima A. (1972). Statocyst-induced eye movements in the crab Soy IIa serrata. I. The sensory input from the statocyst. J. Exp. Biol. 57, 187–204.

    PubMed  Google Scholar 

  • Sandeman, D.C. and Okajima, A. (1973a). Statocyst-induced eye movements in the crab Scylla serrata. II. The responses of the eye muscles. J. Exp. Biol. 58, 197–212.

    Google Scholar 

  • Sandeman, D.C. and Okajima, A. (1973b). Statocyst-induced eye movements in the crab Scylla serrata. III. The anatomical projections of sensory and motor neurones and the responses of the motor neurones. J. Exp. Biol. 59, 17–38.

    Google Scholar 

  • Schmidt, K. (1973). Vergleichende morphologische Untersuchungen an Mechanorezeptoren der Insekten. Verh. Dtsch. Zool. Ges. 1971, p. 214–219.

    Google Scholar 

  • Schöne, H. (1959). Die Lageorientierung mit Statolithenorganen und Augen. Ergebn. Biol. 21, 161–209.

    Article  Google Scholar 

  • Schöne, H. (Ed.) (1975). Mechanisms of spatial perception and orientation as related to gravity. Fortschritte Zool. 23, 1-296, Fischer Verlag, Stuttgart.

    Google Scholar 

  • Schuijf, A. and Hawkins, A.D. (Eds.) (1976). Sound reception in fish. Developments in Aquaculture and Fisheries Science, 5. Elsevier Sei. Publ. Co., Amsterdam.

    Google Scholar 

  • Schwartz, E. (1965). Bau und Funktion der Seitenlinie des Streifenhechtlings Aplocheilus lineatus. Z. Vergl. Physiol. 50, 55–87.

    Article  Google Scholar 

  • Schwartz, E. (1971). Die Ortung von Wasserwellen durch Oberflschenfische. Z. Vergl. Physiol. 74, 64–80.

    Article  Google Scholar 

  • Schwartz, E. (1974). Lateral-line mechano-receptors in fishes and amphibians. In: A. Fessard (Ed.): Handbook of Sensory Physiology Vol. III/3, p. 257–278, Springer Verlag, Berlin.

    Google Scholar 

  • Schwartzkopff, J. (1974). Mechanoreception. In: M. Rockstein (Ed.): The Physiology of Insecta, Vol. II, p. 273–352, Academic Press, New York.

    Google Scholar 

  • Silvey, G.E., Dunn, P.A. and Sandeman, D.C. (1976). Integration between statocyst sensory neurons and oculomotor neurons in the crab Scylla serrate. II. The thread hair sensory receptors. J. Comp. Physiol. 108, 45–52.

    Article  Google Scholar 

  • Spinola, S.M. and Chapman, K.M. (1975). Proprioceptive indentation of the campaniform sensilia of cockroach legs. J. Comp. Physiol. 96, 257–272.

    Article  Google Scholar 

  • Tautz, J. (1977a). Mechanismen und biologische Bedeutung der Luftschallwahrnehmung bei Schmetterlingsraupen. Diss. Universität Konstanz, 188 p.

    Google Scholar 

  • Tautz, J. (1977b). Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. I. Mechanical properties of the receptor hairs. J. Comp. Physiol, 118, 13–31.

    Article  Google Scholar 

  • Thurm, U. (1968). Steps in the transducer process of mechanoreceptors. Symp. Zool. Soc. London 23, 199–216.

    Google Scholar 

  • J.D. Carthy and G.E. Newell (Eds.): Invertebrate Receptors. Acad. Press, London.

    Google Scholar 

  • Thurm, U. (1969). General organization of sensory receptors. Rend. Scuola Intern. Fisica “E. Fermi”. XLIII Corso p. 44–68.

    Google Scholar 

  • Thurm, U. (1974). Mechanisms of electrical membrane responses in sensory receptors, illustrated by mechanoreceptors. In: L. Jaenicke (Ed.): Biochemistry of Sensory Functions, p. 367–390, Springer Verlag, Berlin.

    Google Scholar 

  • Thurm, U. (1977). Sensorische Transduktion–ein Steuerungsprozess. In: W. Hoppe, W. Lohmann, H. Markl, H. Ziegler (Eds.): Biophysik p. 391–402. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • van Bergeijk, W.A. (1964). Directional and non-directional hearing in fish. In: W.N. Tavolga (Ed.): Marine Bio-Acoustics, p. 281–299. Pergamon Press, Oxford.

    Google Scholar 

  • van Bergeijk, W.A. (1967). The evolution of vertebrate hearing. In: W.D. Neff (Ed.): Contributions to Sensory Physiology, Vol. 2, p. 1–49. Acad. Press, New York.

    Google Scholar 

  • Vinnikov, Ya.A. (1974). Sensory Reception. Cytology, Molecular Mechanisms and Evolution. Springer Verlag, Berlin.

    Google Scholar 

  • von Holst, E. (1950). Die Arbeitsweise des Statolithenapparates bei Fischen. Z. Vergl. Physiol. 32, 60–120.

    Article  Google Scholar 

  • Wells, M.J. (1960). Proprioception and visual discrimination of orientation in Octopus. J. Exp. Biol. 37, 489–499.

    Google Scholar 

  • Wendler, G. (1964). Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z. Vergl. Physiol. 48, 198–250.

    Article  Google Scholar 

  • Wendler, G. (1965). Über den Anteil der Antennen an der Schwererezeption der Stabheuschrecke Carausius morosus Br. Z. Vergl. Physiol. 51, 60–66.

    Article  Google Scholar 

  • Wendler, G. (1971). Gravity orientation in insects: the role of different mechanoreceptors. In: S. Gordon and M.J. Cohen: Gravity and the Organism.,p. 195–199. University of Chicago Press, Chicago.

    Google Scholar 

  • Wendler, G. (1972). Körperhaltung bei der Stabheuschrecke: ihre Beziehung zur Schwereorientierung und Mechanismen ihrer Regelung. Verh. Dtsch. Zool. Ges. 1971, p. 214–219.

    Google Scholar 

  • Wendler, G. (1975). Physiology and systems analysis of gravity orientation in two insect species (Carausius morosus, Calandra granaria). Fortschritte Zool. 23, 33–48.

    Google Scholar 

  • Wersäll, J. and Bagger-Sjöböck, D. (1974). Morphology of the vestibular sense organ. In: H.H. Kornhuber (Ed.): Handbook of Sensory Physiology Vol. VI/1, p. 123–170. Springer Verlag, Berlin.

    Google Scholar 

  • Wiese, K. (1976). Mechanoreceptors for near-field water displacements in crayfish. J. Neurophysiol. 39, 816–833.

    PubMed  Google Scholar 

  • Wiese, K., Calabrese, R.L. and Kennedy, D. (1976). Integration of directional mechanosensory input by crayfish interneurons. J. Neurophysiol. 39, 834–843.

    PubMed  Google Scholar 

  • Wolff, H.G. (1973). Statische Orientierung bei Mollusken. Fortschritte Zool. 21, 80–99.

    Google Scholar 

  • Wolff, H.G. (1975). Statocysts and geotactic behavior in gastropod molluscs. Fortschritte Zool. 23, 63–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Markl, H. (1978). Adaptive Radiation of Mechanoreception. In: Ali, M.A. (eds) Sensory Ecology. NATO Advanced Study Institutes Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3363-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3363-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3365-4

  • Online ISBN: 978-1-4684-3363-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics