Skip to main content

Weak Interactions of Pions and Muons

  • Conference paper
High-Energy Physics and Nuclear Structure

Abstract

Let me begin with a brief summary of the present status of weak interaction theory. The basic interaction is described in terms of charged currents

$${{H}_{W}}=\frac{G}{\sqrt{2}}{{g}_{\lambda }}{{g}_{\lambda }}^{+}$$
(1)
$${{g}_{\lambda }}={{\overline{v}}_{\mu }}{{\gamma }_{\lambda }}\left( 1+{{\gamma }_{5}} \right)\mu +\overline{{{v}_{e}}}{{\gamma }_{\lambda }}\left( 1+{{\gamma }_{5}} \right)e+{{J}_{\lambda }}$$
(2)

where J is the hadronic current assumed to be of the Cabibbo form

$${{J}_{\lambda }}=\cos \theta \left( {{J}_{\lambda }}^{1}+i{{J}_{\lambda }}^{2} \right)+\sin \theta \left( {{J}_{\lambda }}^{4}+i{{J}_{\lambda }}^{5} \right)$$
(3)

where the superscripts define components of an SU3 octet. Here we will be interested only in the strangeness-conserving current cosθ(Jλ 1 + iJλ 2) where 1,2 are isospin indices. Beyond the assumed isovector property we desire to specify the hadronic current as com-pletely as possible. This is much harder than in the case of the leptonic current (the first two terms of Eq.(2)) because we do not know what elementary particles to use to describe the current. A standard assumption is that this current has the basic properties described by the quark representation

$$\cos \theta \left( {{J}_{\lambda }}^{1}+i{{J}_{\lambda }}^{2} \right)\equiv {{V}_{\lambda }}+{{A}_{\lambda }}\propto \overline{p}{{\gamma }_{\lambda }}\left( 1+{{\gamma }_{5}} \right)n$$
(4)

where p,n are the field operators of the quarks. Unfortunately, this leads to very few conclusions without a knowledge of the strong interactions of quarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. No attempt is made here at a comprehensive bibliography. Details and references concerning most of this paper may be found in T. D. Lee and C. S. Wu, Ann. Rev. Nuc. Sci. 15, 381 (1965).

    Google Scholar 

  2. S. Weinberg, Phys. Rev. 112, 1375 (1958).

    Article  Google Scholar 

  3. For a detailed review see R. J. Blinstoyle, Proceedings, Topical Conference on Weak Interactions, p. 495 (CERN, 1969 ). For a discussion of radiative correction uncertainties see E. S. Abers, D. A. Dicus, R. E. Norton, and H. R. Quinn, Phys. Rev. 167, 1461 (1968). Also B. Beg et al, Phys. Rev. Letters 23, 270 (1969).

    Google Scholar 

  4. This assumes F(q2) approaches a constant as q2/→ ∞. A still weaker assumption would be F(q2)/q2 → 0 as q2.4→∞. I am grate- ful to Dr. Pagels for comments on this point. weaker assumption would be F(q2)/q2 0 as qz.4–∞. I am grate- ful to Dr. Pagels for comments on this point.

    Google Scholar 

  5. H. Pagels, Phys. Rev. 179, 1337 (1969), and to be published.

    Google Scholar 

  6. C. Lovelace, invited paper at the Conference on 7N Scattering, University of California, Irvine, Dec. 1967.

    Google Scholar 

  7. B. L. Ioffe and E. P. Shabalin, Jour. of Nucl. Physics (USSR) 6, 828 (1967).

    Google Scholar 

  8. Tor a summary of these ideas see R. E. Marshak et al in Pro-ceedings of the Topical Conference on Weak Interactions, CERN 1969, p. 371.

    Google Scholar 

  9. N. Christ, Phys. Rev. 176, 2086 (1968). W. Kummer and G. Segré, Nuclear Physics 64, 585 (1965).

    Article  Google Scholar 

  10. S. Okubo, Nuov. Cim. 54A, 491 (1968).

    Article  Google Scholar 

  11. Our summary of muon decay experimental results is from S. E. Derenzo, R. H. Hildebrand, and C. Vossler, Physics Letters 28B, 401 (1969). See also S. E. Derenzo, Phys. Rev. 181, 1854 (1969).

    Google Scholar 

  12. T. D. Lee and C. N. Yang, Phys. Rev. 108, 1611 (1957).

    Article  Google Scholar 

  13. Akhmanov et al, Soviet Journal of Nuclear Physics 6, 230 (1968) [Russian original 6, 316 (1967)]

    Google Scholar 

  14. B. Pontecorvo in OTd and New Problems in Elementary Particles, p. 251 (Academic Press, 1968 ).

    Google Scholar 

  15. For a further discussion see L. Wolfenstein, Nuovo Cimento, to be published.

    Google Scholar 

  16. Di Capua et al, Phys. Rev. 133B, 1333 (1964).

    Article  Google Scholar 

  17. N. V. Baggett et al, Phys. Rev. Letters 23, 249 (1969).

    Article  Google Scholar 

  18. P. De Pommier et al, Nucl. Phys. B4, 189 (1968).

    Article  Google Scholar 

  19. P. De Pommier et al, Phys. Letters 7, 285 (1963).

    Article  Google Scholar 

  20. L. Maiani, Physics Letters 26B, 538–(1968).

    Google Scholar 

  21. B. Holstein, private communication.

    Google Scholar 

  22. W. Flagg, Phys. Rev. 178, 2387 (1969).

    Article  Google Scholar 

  23. A. Fujii, Nuovo Cimento 27, 1025 (1963). A. Fujii, M. Morita, and H. Ohtsubo, Supplem. to Prog. Theor. Physics, 1968, p.303. The value of A affects not only gA(q2) but also gp(q2) through the correction in Eq.(13). The singlet capture rate in the second reference is in agreement with that given by P. K. Kabir, Z. Physik 191, 447 (1966).

    Google Scholar 

  24. A. Quarenta et al, Phys. Rev. 177, 2118 (1969).

    Article  Google Scholar 

  25. G. A. Lobov, Nucl. Phys. 43, 430 (1963), G. I. Opat, Phys. Rev. 134 B 428 (1964), and references therein.

    Google Scholar 

  26. Some of these have been calculated by S. L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this paper

Cite this paper

Wolfenstein, L. (1970). Weak Interactions of Pions and Muons. In: Devons, S. (eds) High-Energy Physics and Nuclear Structure. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1827-9_107

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1827-9_107

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1829-3

  • Online ISBN: 978-1-4684-1827-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics