Skip to main content

The Basal Forebrain Cholinergic System: An Evolving Concept in the Neurobiology of the Forebrain

  • Chapter
Activation to Acquisition

Abstract

The basal forebrain cholinergic system (BFCS) is the cholinergic component of a broader population of conspicuous neurons in the basal forebrain, recently retermed the basal forebrain magnocellular complex (BFMC) (Hedreen et al., 1984; Koliatsos et al., in press, a). These neurons, which are large (15–18 × 20–30 μm in the rat; ca. 40 × 50 μm in the human), isodendritic, and intensely basophilic, are located in the medial septum, diagonal band of Broca (DBB), substantia innominata, and substriatal gray substance (Kimura et al., 1981; Hedreen et al., 1983; Mesulam et al., 1983b, 1984; Arendt et al., 1986; Dinopoulos et al., 1986; Mesulam and Geula, 1988). Individual cells of the BFMC project to restricted zones within cortex (Table I) (iso- and mesocortex) and limbic structures (hippocampus, piriform cortex, basolateral amygdala) and to the olfactory bulb. In various telencephalic targets of the system, terminal fields of these cells are organized differently, both in terms of cholinergic fiber densities and the extent of terminal domains of individual neurons (Koliatsos et al., in press, a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggleton, J.P., Burton, M.J. and Passingham, R.E. (1980): Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatto). Brain Res. 190:347–368

    Article  Google Scholar 

  • Agid, Y., Javoy-Agid, F., Ruberg, M., Pillon, B., Dubois, B., Duyckaerts, C., Hauw, J.-J., Baron, J.-C, and Scatton, B. (1986): Progressive supranuclear palsy: anatomo-clinical and biochemical considerations. In: Parkinson’s Disease: Advances in Neurology, Vol. 45. Yahr, M.D., Bergmann, K.J., eds. New York: Raven Press

    Google Scholar 

  • Aigner, T.G., Mitchell, S.J., Aggleton, J.P., DeLong, M.R., Struble, R.G., Price, D.L., Wenk, G.L., Pettigrew, K.D. and Mishkin, M. (submitted for publication): Transient impairment of recognition memory following ibotenic-acid lesions of the basal forebrain in macaques

    Google Scholar 

  • Alexander, G.E., DeLong, M.R. and Strick, P.L. (1986): Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci. 9:357–381

    Article  Google Scholar 

  • Alheid, G.F. and Heimer, L. (1988): New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neurosci. 27:1–39

    Article  Google Scholar 

  • Allen, S.J., Dawbarn, D. and Wilcock, G.K. (1988): Morphometric immunochemical analysis of neurons in the nucleus basalis of Meynert in Alzheimer’s disease. Brain Res. 454:275–281

    Article  Google Scholar 

  • Amaral, D.G. and Kurz, J. (1985): An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J. Comp. Neurol. 240:37–59

    Article  Google Scholar 

  • Amaral, D.G. and Sinnamon, H.M. (1977): The locus coeruleus: neurobiology of a central noradrenergic nucleus. Prog. Neuropathol. 9:147–196

    Article  Google Scholar 

  • Amaral, D.G., Veazey, R.B. and Cowan, W.M. (1982): Some observations on hypothalamo-amygdaloid connections in the monkey. Brain Res. 252:13–27

    Article  Google Scholar 

  • Andy, O.J. and Stephan, H. (1959): The nuclear configuration of the septum of Galago demidovii. J. Comp. Neurol. 111:503–546

    Article  Google Scholar 

  • Andy, O.J. and Stephan, H. (1961): Septal nuclei in the Soricidae (insectivores): cytoarchitectonic study. J. Comp. Neurol. 117:251–274

    Article  Google Scholar 

  • Andy, O.J. and Stephan, H. (1966): Septal nuclei in primate phylogeny: a quantitative investigation. J. Comp. Neurol. 126:157–170

    Article  Google Scholar 

  • Andy, O.J. and Stephan, H. (1968): The septum in the human brain. J. Comp. Neurol. 133:383–410

    Article  Google Scholar 

  • Angeletti, R.H. and Bradshaw, R.A. (1971): Nerve growth factor from mouse submaxillary gland: amino acid sequence. Proc. Natl. Acad. Sci. USA 68:2417–2420

    Article  Google Scholar 

  • Arenberg, D. (1990): Longitudinal changes in cognitive performance. In: Alzheimer’s Disease: Advances in Neurology, Vol. 51. Wurtman, R. J., Corkin, S., Growdon, J. H., Ritter-Walker, E., eds. New York: Raven Press

    Google Scholar 

  • Arendt, T., Bigl, V., Arendt, A. and Tennstedt, A. (1983): Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans, and Korsakoff’s disease. Acta Neuropathol. (Berl.) 61:101–108

    Article  Google Scholar 

  • Arendt, T., Zvegintseva, H.G. and Leontovich, T.A. (1986): Dendritic changes in the basal nucleus of Meynert and in the diagonal band nucleus in Alzheimer’s disease a quantitative Golgi investigation. Neurosci. 19:1265–1278

    Article  Google Scholar 

  • Ashton, H. (1987): Brain Systems, Disorders, and Psychotropic Drugs. Oxford: Oxford University Press

    Google Scholar 

  • Aston-Jones, G., Rogers, J., Grant, S., Ennis, M., Shaver, R. and Bartus, R. (1984): Physiology of cortically projecting neurons in monkey nucleus basalis of Meynert. Soc. Neurosci. Abstr. 10:808

    Google Scholar 

  • Aston-Jones, G., Shaver, R. and Dinan, T.G. (1985): Nucleus basalis neurons exhibit axonal branching with decreased impulse conduction velocity in rat cerebrocortex. Brain Res. 325:271–285

    Article  Google Scholar 

  • Ayer-LeLievre, C., Olson, L., Ebendal, T., Seiger, A. and Persson, H. (1988): Expression of the β-nerve growth factor gene in hippocampal neurons. Science 240:1339–1341

    Article  Google Scholar 

  • Ayala, G. (1915): A hitherto undifferentiated nucleus in the forebrain (nucleus subputaminalis). Brain 37:433–448

    Article  Google Scholar 

  • Azmitia, E.C. and Segal, M. (1978): An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J. Comp. Neurol. 179: 641–668

    Article  Google Scholar 

  • Bartus, R.T., Dean, R.L. and Fisher, S.K. (1986): Cholinergic treatment for age-related memory disturbances. In: Treatment Development Strategies for Alzheimer’s Disease. Crook, T., Bartus, R. T., Ferris, S., Gershon, S., eds. Madison, Connecticut: Mark Powley Associates

    Google Scholar 

  • Bayer, S.A. (1985): Neurogenesis of the magnocellular basal telencephalic nuclei in the rat. Int. Dev. Neurosci. 3:229–243

    Article  Google Scholar 

  • Beccari, N. (1911): La sostanza perforata anteriore e i suoi rapporti col rinencefalo mel cervello dell’uomo. Arch. Ital. Anat. Embriol. 10:261–328

    Google Scholar 

  • Benardo, L.S. and Prince, D.A. (1982): Cholinergic excitation of mammalian hippocampal pyramidal cells. Brain Res. 249:315–331

    Article  Google Scholar 

  • Berrard, S., Brice, A., Lottspeich, F., Braun, A., Barde, Y.-A. and Mallet, J. (1987): cDNA cloning and complete sequence of porcine choline acetyltransferase: in vitro translation of the corresponding RNA yields an active protein. Proc. Natl. Acad. Sci. USA 84:9280–9284

    Article  Google Scholar 

  • Bialowas, J. and Frotscher, M. (1987): Choline acetyltransferase-immunoreactive neurons and terminals in the rat septal complex: a combined light and electron microscopic study. J. Comp. Neurol. 259:298–307

    Article  Google Scholar 

  • Biesold, D., Inanami, O., Sato, A. and Sato, Y. (1989): Stimulation of the nucleus basalis of Meynert increases cerebral cortical blood flow in rats. Neurosci. Lett. 98:39–44

    Article  Google Scholar 

  • Bigl, V., Woolf, N.J. and Butcher, L.L. (1982): Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res. Bull. 8:727–749

    Article  Google Scholar 

  • Bird, S.J and Aghajanian, G.K. (1976): The cholinergic pharmacology of hippocampal pyramidal cells: a microiontophoretic study. Neuropharmacol. 15: 273–282

    Article  Google Scholar 

  • Björklund, A., Hökfelt, T. and Swanson, L.W. (1987): Preface. In: Integrated Systems of the CNS, Part I, Hypothalamus, Hippocampus, Amy gala, Retina; Handbook of Chemical Neuroanatomy, Vol 5. Björklund, A., Hökfelt, T. and Swanson, L.W., eds. Amsterdam: Elsevier

    Google Scholar 

  • Blessed, G., Tomlinson, B.E. and Roth, M. (1968): The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psych. 114:797–811

    Article  Google Scholar 

  • Bolam, J.P., Ingham, C.A., Izzo, P.N., Levey, A.I., Rye, D.B., Smith, A.D. and Wainer, B.H. (1986): Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat. Brain Res. 397:279–289

    Article  Google Scholar 

  • Bonner, T.I., Buckley, N.J., Young, A.C. and Brann, M.R. (1987): Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532

    Article  Google Scholar 

  • Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemann, S. and Patrick, J. (1986): Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor subunit. Nature 319:368–374

    Article  Google Scholar 

  • Bowen, D.M., Smith, C.B., White, P. and Davison, A.N. (1976): Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496

    Article  Google Scholar 

  • Brashear, H. R., Záborszky, L. and Heimer, L. (1986): Distribution of GABAergic and cholinergic neurons in the rat diagonal band. Neurosci. 17:439–451

    Article  Google Scholar 

  • Brice, A., Berrard, S., Raynaud, B., Ansieau, S., Coppola, T., Weber, M.J. and Mallet, J. (1989): Complete sequence of a cDNA encoding an active rat choline acetyltransferase: a tool to investigate the plasticity of cholinergic phenotype expression. J. Neurosci. Res. 23:266–273

    Article  Google Scholar 

  • Brockhaus, H. (1942): Vergleichend-anatomische Untersuchungen über den Basalkerncomplex. J. Psychol. Neurol. 51:57–95

    Google Scholar 

  • Buckley, N.J., Bonner, T.I. and Brann, M.R. (1988): Localization of a family of muscarinic receptor mRNAs in rat brain. J. Neurosci. 8:4646–4652

    Google Scholar 

  • Burton, M.J., Mora, F. and Rolls, E.T. (1975): Visual and taste neurones in the lateral hypothalamus and substantia innominata: modulation of responsiveness by hunger. Exp. J. Physiol. (Lond.) 252:50P–51P

    Google Scholar 

  • Burton, M.J., Rolls, E.T., and Mora, F. (1976): Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food. Exp. Neurol. 51:668–677

    Article  Google Scholar 

  • Butcher, L.L. and Semba, K. (1989): Reassessing the cholinergic basal forebrain: nomenclature schemata and concepts. Trends Neurosci. 12:483–485

    Article  Google Scholar 

  • Butcher, L.L. and Talbot, K. (1978): Acetylcholinesterase in rat nigro-neostriatal neurons: experimental verification and evidence for cholinergic-dopaminergic interactions in the substantia nigra and caudate-putamen complex. In: Cholinergic-Monoaminergic Interactions in the Brain. Butcher, L.L., ed. New York: Academic Press

    Google Scholar 

  • Butcher, L. and Woolf, N.J. (1984): Histochemical distribution of acetylcholinesterase in the central nervous system: clues to the localization of cholinergic neurons. In: Classical Transmitters in the CNS, Part II. Handbook of Chemical Neuroanatomy, Vol. 3. Björklund, A., Hökfelt, T. and Kuhar, M.J., eds. Amsterdam: Elsevier

    Google Scholar 

  • Butcher, L. L., Talbot, K. and Bilezikjian, L. (1975): Acetylcholinesterase neurons in dopamine-containing regions of the brain. J. Neurol. Transm. 37:127–153

    Article  Google Scholar 

  • Buzsáki, G., Bickford, R.G., Ponomareff, G., Thal, L.J., Mandel, R. and Gage, F.H. (1988): Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. Neurosci. 8:4007–4026

    Google Scholar 

  • Candy, J.M., Perry, R.H., Perry, E.K., Irving, D., Blessed, G., Fairbairn, A.F. and Tomlinson, B.E. (1983): Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J. Neurol. Sci. 59:277–289

    Article  Google Scholar 

  • Carlsen, J., Záborszky, L. and Heimer, L. (1985): Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study. J. Comp. Neurol. 234: 155–167

    Article  Google Scholar 

  • Casamenti, F., Deffenu, G., Abbamondi, A.L. and Pepeu, G. (1986): Changes in cortical acetylcholine output induced by modulation of the nucleus basalis. Brain Res. Bull. 16:689–695

    Article  Google Scholar 

  • Casanova, M.F., Walker, L.C., Whitehouse, P.J. and Price, D.L. (1985): Abnormalities of the nucleus basalis in Down’s syndrome. Ann. Neurol. 18:310–313

    Article  Google Scholar 

  • Celesia, G.G. and Jasper, H.H. (1966): Acetylcholine released from cerebral cortex in relation to state of activation. Neurol. 16:1053–1070

    Article  Google Scholar 

  • Chan-Palay, V. (1988a): Galanin hyperinnervates surviving neurons of the human basal nucleus of Meynert in dementias of Alzheimer’s and Parkinson’s disease: a hypothesis for the role of galanin in accentuating cholinergic dysfunction in dementia. J. Comp. Neurol. 273:543–557

    Article  Google Scholar 

  • Chan-Palay, V. (1988b): Neurons with galanin innervate cholinergic cells in the human basal forebrain and galanin and acetylcholine coexist. Brain Res. Bull. 21:465–472

    Article  Google Scholar 

  • Chang, H.T., Penny, G.R. and Kitai, S.T. (1987): Enkephalinergic-cholinergic interaction in the rat globus pallidus: a pre-embedding double-labeling immunocytochemistry study. Brain Res. 426:197–203

    Article  Google Scholar 

  • Cole, A.E. and Nicoll, R.A. (1984): Characterization of a slow cholinergic post-synaptic potential recorded in vitro from rat hippocampal pyramidal cells. J. Physiol. 352:173–188

    Google Scholar 

  • Collingridge, G.L., Herron, C.E. and Lester, R.A.J. (1988): Synaptic activation of N-methyl-D-aspartate receptors in the Schaffer collateral-commissural pathway of rat hippocampus. J. Physiol. 399:283–300

    Google Scholar 

  • Conrad, L.C.A. and Pfaff, D.W. (1976): Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area. J. Comp. Neurol. 169:185–220

    Article  Google Scholar 

  • Crawford, G.D., Correa, L. and Salvaterra, P.M. (1982): Interaction of monoclonal antibodies with mammalian choline acetyltransferase. Proc. Natl. Acad. Sci. USA 79:7031–7040

    Article  Google Scholar 

  • Das, G.D. (1971): Projections of the interstitial nerve cells surrounding the globus pallidus: a study of retrograde changes following cortical ablations in rabbits. Z. Anat. Entwick-Gesch. 41:135–160

    Article  Google Scholar 

  • Das, G.D. and Kreutzberg, G.W. (1968): Evaluation of interstitial nerve cells in the central nervous system: a correlative study using acetylcholinesterase and Golgi techniques. Ergebu. Anat. Entw. Gesch. 41:1–58

    Google Scholar 

  • Davies, P. (1979): Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res. 171:319–327

    Article  Google Scholar 

  • DeLong, M.R. (1971): Activity of pallidal neurons during movement. J. Neurophysiol. 34:414–427

    Google Scholar 

  • de Olmos, J. and Heimer, L. (1980): Double and triple labeling of neurons with fluorescent substances: the study of collateral pathways in the ascending raphe system. Neurosci. Lett. 19:7–12

    Article  Google Scholar 

  • Detárí, L. and Vanderwolf, C.H. (1987): Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anaesthetized rats. Brain Res. 437:1–8

    Article  Google Scholar 

  • Deutsch, J. A. (1971): The cholinergic synapse and the site of memory. Science 174:788–794

    Article  Google Scholar 

  • Dinopoulos, A., Parnavelas, J.G. and Eckenstein, F. (1986): Morphological characterization of cholinergic neurons in the horizontal limb of the diagonal band of Broca in the basal forebrain of the rat. J. Neurocytol. 15:619–628

    Article  Google Scholar 

  • Divac, I. (1981): Cortical projections of the magnocellular nuclei of the basal forebrain: a reinvestigation. Neurosci. 6:983–984

    Article  Google Scholar 

  • Divac, I. (1975): Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb. Review of some functional correlates. Brain Res. 93:385–398

    Article  Google Scholar 

  • Drachman, D.A. and Leavitt, J.L. (1974): Human memory and the cholinergic system. A relationship to aging? Arch. Neurol. 30:113–121

    Article  Google Scholar 

  • Dunbar, J.C., Tregear, G.W. and Bradshaw, R.A. (1984): Histidine residue modification inhibits binding of murine nerve growth factor to its receptor. J. Protein. Chem. 3:349–356

    Article  Google Scholar 

  • Eckenstein, F. and Thoenen, H. (1983): Cholinergic neurons in the rat cerebral cortex demonstrated by immunohistochemical localization of choline acetyltransferase. Neurosci. Lett. 36:211–215

    Article  Google Scholar 

  • Edwards, S.B. and de Olmos, J.S. (1976): Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis. J. Comp. Neurol. 165:417–432

    Article  Google Scholar 

  • Estrada, C., Hamel, E. and Krause, D.N. (1983): Biochemical evidence for cholinergic innervation of intracerebral blood vessels. Brain Res. 266:261–270

    Article  Google Scholar 

  • Fallon, J.H. and Loughlin, S.E. (1982): Monoamine innervation of the forebrain: collateralization. Brain Res. Bull. 9:295–307

    Article  Google Scholar 

  • Fatt, P. and Katz, B. (1951): An analysis of the end-plate potential recorded with an intra-cellular electrode. J. Physiol. 115:320–370

    Google Scholar 

  • Feremutsch, K. (1961): Basalganglien. In: Primatologia. Handbuch der Primatenkunde, Lieferung 8, Vol. 2. Hofer, H., Schultz, A. H., Starck, D., eds. Basel: S. Karger

    Google Scholar 

  • Fischer, W., Gage, F.H. and Björklund, A. (1989): Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Eur. J. Neurosci. 1:34–45

    Article  Google Scholar 

  • Fischer, W., Wictorin, K., Björklund, A., Williams, L.R., Varon, S. and Gage, F.H. (1987): Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329:65–68

    Article  Google Scholar 

  • Foix, C.E. and Nicolesco, J. (1925): Anatomie Cerebrale. Les Noiyaux Gris Centraux et la Region Mesencephalo-sous-optique. Paris: Masson

    Google Scholar 

  • Francis, P.T., Palmer, A.M., Sims, N.R., Bowen, D.M., Davison, A.N., Esiri, M.M., Neary, D., Snowden, J.S. and Wilcock, G.K. (1985): Neurochemical studies of early-onset Alzheimer’s disease: possible influence on treatment. N. Engl. J. Med. 313:7–11

    Article  Google Scholar 

  • Freund, T.F. and Antal, M. (1988): GABA-containing neurons in the septum control inhibitory intemeurons in the hippocampus. Nature 36:170–173

    Article  Google Scholar 

  • Frotscher, M. and Léránth, C. (1935): Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J. Comp. Neurol. 239:237–246

    Article  Google Scholar 

  • Frotscher, M. and Léránth, C. (1986): The cholinergic innervation of the rat fascia dentata: identification of target structures on granule cells by combining choline acetyltransferase immunocytochemistry and Golgi impregnation. J. Comp. Neurol. 243:58–70

    Article  Google Scholar 

  • Fukada, K. (1985): Purification and partial characterization of a cholinergic neuronal differentiation factor. Proc. Natl. Acad. Sci. USA 82:8795–8799

    Article  Google Scholar 

  • Gage, F.H., Armstrong, D.M., Williams, D.R. and Varon, S. (1988): Morphological response of axotomized septal neurons to nerve growth factor. J. Comp. Neurol. 269:147–155

    Article  Google Scholar 

  • Gnahn, H., Hefti, F., Heumann, R., Schwab, M.E. and Thoenen, H. (1983): NGF-mediated increase of choline acetyltransferase (CHAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Dev. Brain Res. 9:45–52

    Article  Google Scholar 

  • Golgi, C. (1873): Sulla sostanza grigia del corvello. Gaz. Med. Ital. Lombardia. 6:244–246

    Google Scholar 

  • Golgi, C. (1885): Sulla fina anatomia delgi organi centrale del sistema nervoso. Riv. Sper. Freniat. Meg. Leg. Alien. Ment. 11:72–123, 193–220

    Google Scholar 

  • Gorry, J. D. (1963): Studies on the comparative anatomy of the ganglion basale of Meynert. Acta. Anat. 55:51–104

    Article  Google Scholar 

  • Grant, S.J. and Aston-Jones, G. (1986): Discharge properties of cortically projecting nucleus basalis neurons in behaving animals. Soc. Neurosci. Abstr. 12:572

    Google Scholar 

  • Groenewegen, H.J. and Russchen, F.T. (1984): Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: a tracing and immunohistochemical study in the cat. J. Comp. Neurol. 223:347–367

    Article  Google Scholar 

  • Growdon, J.H. (in press): Biological therapies for Alzheimer’s disease. In: Dementia. Whitehouse, P.J., ed. Philadelphia: FA Davis

    Google Scholar 

  • Grove, E.A. (1988a): Efferent connections of the substantia innominata in the rat. J. Comp. Neurol. 277:347–364

    Article  Google Scholar 

  • Grove, E.A. (1988b): Neural associations of the substantia innominata in the rat: afferent connections. J. Comp. Neurol. 277:315–346

    Article  Google Scholar 

  • Grove, E.A., Domesick, V.B. and Nauta, W.J.H. (1986): Light microscopic evidence of striatal input to intrapallidal neurons of cholinergic cell group Ch4 in the rat: a study employing the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res. 367:379–384

    Article  Google Scholar 

  • Grünthal, E. (1932): Vergleichend anatomische Untersuchungen über den Zellbau des Globus pallidus und Nucleus basalis der Säuger und des Menschen. J. Psychol. Neurol. (Leipzig) 44:403–428

    Google Scholar 

  • Grünthal, E. (1933): Neuere Ergebnisse vergleichend anatomischer Untersuchungen des Zwischenhirns der Säuger und das spezifisch Menschliche in seinem Bau. Naturwissenschaften 28:521–525

    Article  Google Scholar 

  • Haga, T., Haga, K., Berstein, G., Nishiyama, T., Uchiyama, H. and Ichiyama, A. (1988): Molecular properties of muscarinic receptors. Trends Pharmacol. Sci. 9 (Suppl):12–18

    Article  Google Scholar 

  • Hallanger, A.E., Levey, A.I., Lee, H.J., Rye, D.B. and Wainer, B.H. (1987): The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J. Comp. Neurol. 262:105–124

    Article  Google Scholar 

  • Hammer, R., Berrie, C.P., Birdsall, N.J.M., Burgen, A.S.V. and Hulme, E.C. (1989): Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283:90–92

    Article  Google Scholar 

  • Hammond, D.N., Wainer, B.H., Tonsgard, J.H. and Heller, A. (1986): Neuronal properties of clonal hybrid cell lines derived from central cholinergic neurons. Science 234:1237–1240

    Article  Google Scholar 

  • Haroutunian, V., Kanof, P.D. and Davis, K.L. (1986): Partial reversal of lesion-induced deficits in cortical cholinergic markers by nerve growth factor. Brain Res. 396:397–399

    Article  Google Scholar 

  • Hawkins, R.D., Clark, G.A. and Kandel, E.R. (1987): Cell biological studies of learning in simple vertebrate and invertebrate systems. In: Handbook of Physiology, Section 1: The Nervous System, Vol. V, Higher Functions of the Brain, Part 1. Mountcastle V.B., ed. Bethesda, Maryland: American Physiological Society

    Google Scholar 

  • Hedreen, J.C., Bacon, S.J., Cork, L.C., Kitt, C.A., Crawford, G.D., Salvaterra, P.M. and Price, D.L. (1983): Immunocytochemical identification of cholinergic neurons in the monkey central nervous system using monoclonal antibodies against choline acetyltransferase. Neurosci. Lett. 43:173–177

    Article  Google Scholar 

  • Hedreen, J.C., Struble, R.G., Whitehouse, P.J. and Price, D.L. (1984): Topography of the magnocellular basal forebrain system in human brain. J. Neuropathol. Exp. Neurol. 43:1–21

    Article  Google Scholar 

  • Hedreen, J.C., Uhl, G.R., Bacon, S.J., White, C.L. III, Price, D.L. and Fambrough, D.M. (1982): A fiber network in monkey cerebral cortex revealed by acetylcholinesterase immunocytochemistry. Soc. Neurosci. Abstr. 8:212

    Google Scholar 

  • Hefti, F., (1986): Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 6:2155–2162

    Google Scholar 

  • Hefti, F., Dravid, A. and Hartikka, J. (1984): Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res. 293:305–311

    Article  Google Scholar 

  • Hefti, F., Hartikka, J., Salvatierra, A., Weiner, W.J., and Mash, D.C. (1986): Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain. Neurosci. Lett. 69:37–41

    Article  Google Scholar 

  • Heimer, L., Alheid, G.F. and Záborszky, L., (1989): Basal forebrain and substantia innominata. In: Neuroscience Year, Supplement 1 to the Encyclopedia of Neuroscience. Adelman, G., ed. Boston: Birkhäuser

    Google Scholar 

  • Hersh, L.B., Kong, C.F., Dyer, S., Strauss, W., Lorenz, M. and Hilt, D. (1989): Isolation of a genomic clone of human choline acetyltransferase. Soc. Neurosci. Abstr. 15:63

    Google Scholar 

  • Higgins, G.A. and Mufson, E.J., (1989): NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer’s disease. Exp. Neurol. 106:222–235

    Article  Google Scholar 

  • Honegger, P. and Lenoir, D. (1982): Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Dev. Brain Res. 3:229–238

    Article  Google Scholar 

  • Ingham, C.A., Bolam, J.P. and Smith, A.D. (1988): GABA-immunoreactive synaptic boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurons. J. Comp. Neurol. 273:263–282

    Article  Google Scholar 

  • Irle, E. and Markowitsch, H.J. (1987): Basal forebrain-lesioned monkeys are severely impaired in tasks of association and recognition memory. Ann. Neurol. 22:735–743

    Article  Google Scholar 

  • Jacobowitz, D. and Palkovits, M. (1974): Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon). J. Comp. Neurol. 157:13–28

    Article  Google Scholar 

  • Jasper, H.H. and Tessier, J. (1971): Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 172:601–602

    Article  Google Scholar 

  • Johnson, D., Lanahan, A., Buck, C.R., Sehgal, A., Morgan, C., Mercer, E., Bothwell, M. and Chao, M. (1986): Expression and structure of the human NGF receptor. Cell 47:545–554

    Article  Google Scholar 

  • Johnston, M.V., McKinney, M., and Coyle, J.T. (1979): Evidence for a cholinergic projection to neocortex from neurons in basal forebrain. Proc. Natl. Acad. Sci. USA 76:5392–5396

    Article  Google Scholar 

  • Johnston, M.V., McKinney, M., and Coyle, J.T. (1981): Neocortical cholinergic innervation: a description of extrinsic and intrinsic components in the rat. Exp. Brain Res. 43:159–172

    Article  Google Scholar 

  • Jones, B.E. and Moore, R.Y. (1977): Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res. 127:23–53

    Article  Google Scholar 

  • Jones, E.G., Burton, H., Saper, C.B. and Swanson, L.W. (1976): Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J. Comp. Neurol. 167:385–420

    Article  Google Scholar 

  • Jope, R.S. (1979): High affinity choline transport and acetylCoA production in brain and their roles in the regulation of acetylcholine synthesis. Brain Res. Rev. 1:313–344

    Article  Google Scholar 

  • Kanai, T. and Szerb, J.C. (1965): Mesencephalic reticular activating system and cortical acetylcholine output. Nature 205:80–82

    Article  Google Scholar 

  • Kelley, A.E., Domesick, V.B. and Nauta, W.J.H. (1982): The amygdalostriatal projection in the rat: an anatomical study by anterograde and retrograde tracing methods. Neurosci. 7:615–630

    Article  Google Scholar 

  • Kievit, J. and Kuypers, H.G.J.M. (1975): Basal forebrain and hypothalamic connections to frontal and parietal cortex in the rhesus monkey. Science 187:660–662

    Article  Google Scholar 

  • Kimura, H., McGeer, P. L., Peng J.H. and McGeer E.G. (1981): Mapping of cholinergic systems in rostral forebrain of the rodent. In: Cholinergic Mechanisms. Phylogenetic Aspects, Central and Peripheral Synapses, and Clinical Significance. Advances in Behavioral Biology, Vol. 25. Pepeu, G., Ladinsky, H., eds. New York: Plenum Press

    Google Scholar 

  • Kodama, S. (1926a): Über die sogenannten Basalganglien. (Morphogenetische und pathologisch-anatomische Untersuchungen). Schweiz. Arch. Neurol. Psychiatr. 18:179–246

    Google Scholar 

  • Kodama, S. (1926b): Über die sogenannten Basalganglien. (Morphogenetische und pathologisch-anatomische Untersuchungen). D. Zusammenfassung und Schlussbetrachtungen. Schweiz. Arch. Neurol. Psychiatr. 19:152–177

    Google Scholar 

  • Kodama, S. (1927): Über die sogenannten Basalganglien. (Morphogenetische und pathologisch-anatomische Untersuchungen). Pathologisch-anatomische Untersuchungen mit Bezug auf die sogenannten Basalganglien und ihre Adnexe. Schweiz. Arch. Neurol. Psychiatr. 20:209–261

    Google Scholar 

  • Kodama, S. (1928a): Über die sogenannten Basalganglien. (Morphogenetische und pathologisch-anatomische Untersuchungen). Pathologisch-anatomische Untersuchungen mit Bezug auf die sogenannten Basalganglien und ihre Adnexe. B. über die Faserverbindungen zwischen den Basalganglien und ihren Adnexen, sowie den übrigen subkortikalen Kerngebieten beim Menschen, nebst einigen experimentellen Mitteilungen. Schweiz. Arch. Neurol. Psychiatr. 23:38–100

    Google Scholar 

  • Kodama, S. (1928b): Über die sogenannten Basalganglien. (Morphogenetische und pathologisch-anatomische Untersuchungen). Pathologisch-anatomische Untersuchungen mit Bezug auf die sogenannten Basalganglien und ihre Adnexe. B. über die Faserverbindungen zwischen den Basalganglien und ihren Adnexen, sowie den übrigen subkortikalen Kerngebieten beim Menschen, nebst einigen experimentellen Mitteilungen. Kritische Betrachtungen. Schweiz. Arch. Neurol. Psychiatr. 23:179–259

    Google Scholar 

  • Koelle, G.B. (1963): Cytological distributions and Physiological functions of cholinesterases. In: Handb. exp. Pharmak., Vol. 15. Eichle, O., Farah, A., eds. Heidelberg: Springer-Verlag

    Google Scholar 

  • Koelle, G.B. (1987): Acetylcholine. In: Encyclopedia of Neuroscience, Vol. I. Adelman G., ed. Boston: Birkhäuser

    Google Scholar 

  • Koelle, G.B. and Friedenwald, J.S. (1949): A histochemical method for localizing Cholinesterase activity. Proc. Soc. Exp. Biol. Med. 70:617–622

    Google Scholar 

  • Koh, S., Oyler, G.A. and Higgins, G.A. (1989): Localization of nerve growth factor receptor messenger RNA and protein in the adult rat brain. Exp. Neurol. 106:209–221

    Article  Google Scholar 

  • Köhler, C. and Chan-Palay, V. (1983): Distribution of gamma aminobutyric acid containing neurons and terminals in the septal area. Anat. Embryol. 167:53–65

    Article  Google Scholar 

  • Köhler, C., Chan-Palay, V. and Wu, J-Y. (1984): Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. Anat. Embryol. 169:41–44

    Article  Google Scholar 

  • Koliatsos, V.E. and Price, D.L. (submitted for publication): Organization of basal forebrain projections to the telencephalon: a reinvestigation with emphasis on limbic efferents

    Google Scholar 

  • Koliatsos, V.E., Applegate, M.D., Kitt, C.A., Walker, L.C., DeLong, M.R. and Price, D.L. (1989): Aberrant phosphorylation of neurofilaments accompanies transmitter-related changes in rat septal neurons following transection of the fimbria-fornix. Brain Res. 482:205–218

    Article  Google Scholar 

  • Koliatsos, V.E., Applegate, M.D., Knüsel, B., Junard, E., Burton, L.E., Mobley, W.C., Hefti, F.F. and Price, D.L. (submitted for publication): Recombinant human nerve growth factor prevents retrograde degeneration of axotomized basal forebrain cholinergic neurons in the rat

    Google Scholar 

  • Koliatsos, V.E., Martin, L.J., and Price, D.L. (in press, a): Efferent organization of the mammalian basal forebrain. In: Brain Cholinergic Systems, Steriade, M., Biesold, D., eds. Oxford: Oxford University Press

    Google Scholar 

  • Koliatsos, V. E., Martin, L. J., Walker, L. C., Richardson, R. T., DeLong, M.R. and Price, D.L. (1988): Topographic, non-collateralized basal forebrain projections to amygdala, hippocampus, and anterior cingulate cortex in the rhesus monkey. Brain Res. 463:133–139

    Article  Google Scholar 

  • Koliatsos, V.E., Nauta, H.J.W., Clatterbuck, R.E., Holztman, D.M., Mobley, W.C. and Price, D.L. (in press, b): Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in monkey. J. Neurosci.

    Google Scholar 

  • Koo, E.K. and Price, D.L. (in press): The neurobiology of dementia. In: Dementia. Whitehouse, P.J., ed. Philadelphia: F.A. Davis

    Google Scholar 

  • Korsching, S., Auburger, G., Heumann, R., Scott, J. and Thoenen, H. (1985): Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO. J. 4:1389–1393

    Google Scholar 

  • Kordower, J.H. and Mufson, E.J. (in press): Galanin-like immunoreactivity within the primate basal forebrain: differential staining patterns between humans and monkeys. J. Comp. Neurol.

    Google Scholar 

  • Kordower, J.H., Bartus, R.T., Bothwell, M., Schatteman, G. and Gash, D.M. (1988): Nerve growth factor receptor immunoreactivity in the nonhuman primate (Cebus apella): distribution, morphology, and colocalization with cholinergic enzymes. J. Comp. Neurol. 277:465–486

    Article  Google Scholar 

  • Krettek, J.E. and Price, J.L. (1978): Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J. Comp. Neurol. 178:225–254

    Article  Google Scholar 

  • Krnjevic, K. and Ropert, N. (1982): Electrophysiological and pharmacological characteristics of facilitation of hippocampal population spikes by stimulation of the medial septum. Neurosci. 7:2165–2183

    Article  Google Scholar 

  • Kromer, L.F. (1987): Nerve growth factor treatment after brain injury prevents neuronal death. Science 235:214–216

    Article  Google Scholar 

  • Kurosawa, M., Sato, A. and Sato, Y. (1989): Stimulation of the nucleus basalis of Meynert increases acetylcholine release in the cerebral cortex in rats. Neurosci. Lett. 98:45–50

    Article  Google Scholar 

  • Lacombe, P., Sercombe, R., Verrecchia, C., Philipson, V., MacKenzie, E.T. and Seylaz, J. (1989): Cortical blood flow increases induced by stimulation of the substantia innominata in the unanesthetized rat. Brain Res. 491:1–14

    Article  Google Scholar 

  • Larson, J., Wong, D. and Lynch, G. (1986): Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 368:347–350

    Article  Google Scholar 

  • Lehmann, J., Nagy, J.I., Atmadja, S. and Fibiger, H.C. (1980): The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex of the rat. Neurosci. 5:1161–1174

    Article  Google Scholar 

  • Leontovich, T.A. and Zhukova, G.P. (1963): The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of Carnivora. J. Comp. Neurol. 121:347–379

    Article  Google Scholar 

  • Léránth, C. and Frotscher, M. (1987): Cholinergic innervation of hippocampal GAD- and somatostatin-immunoreactive commissural neurons. J. Comp. Neurol. 261:33–47

    Article  Google Scholar 

  • Léránth, C. and Frotscher, M. (1989): Organization of the septal region in the rat brain: cholinergic-GABAergic interconnections and the termination of hippocampo-septal fibers. J. Comp. Neurol. 289:304–314

    Article  Google Scholar 

  • Léránth, C., MacLusky, N.J., Shanabrough, M. and Naftolin, F. (1988): Catecholaminergic innervation of luteinizing hormone-releasing hormone and glutamic acid decarboxylase immunopositive neurons in the rat medial preoptic area: an electron-microscopic double immunostaining and degeneration study. Neuroendocrinol. 48:591–602

    Article  Google Scholar 

  • Levey, A.I., Armstrong, D.M., Atweh, S.F., Terry, R.D. and Wainer, B.H. (1983): Monoclonal antibodies to choline acetyltransferase: production, specificity, and immunohistochemistry. J. Neurosci. 3:1–9

    Google Scholar 

  • Levey, A.I., Hallanger, A.E. and Wainer, B.H. (1987): Cholinergic nucleus basalis neurons may influence the cortex via the thalamus. Neurosci. Lett. 74:7–13

    Article  Google Scholar 

  • Levey, A.I., Simonds, W.F., Spiegel, A.M. and Brann, M.R. (1989): Characterization of muscarinic receptor subtype-specific antibodies. Soc. Neurosci. Abstr. 15:64

    Google Scholar 

  • Levi-Montalcini, R. (1987): The nerve growth factor 35 years later. Science 237:1154–1162

    Article  Google Scholar 

  • Levi-Montalcini, R. and Hamburger, V. (1951): Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 116:321–361

    Article  Google Scholar 

  • Levi-Montalcini, R. and Hamburger, V. (1953): A diffusible agent of mouse sarcoma, producing hyperplasia of sympathetic ganglia and hypemeurotization of viscera in the chick embryo. J. Exp. Zool. 123:233–287

    Article  Google Scholar 

  • Lewis, P.R. and Shute, C.C.D. (1967): The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain 90:521–540

    Article  Google Scholar 

  • Lindstrom, J., Schoepfer, R. and Whiting, P. (1987): Molecular studies of the neuronal nicotinic acetylcholine receptor family. Mol. Neurobiol. 1:281–338

    Article  Google Scholar 

  • Lister, T. and Ray, D.E. (1988): The role of basal forebrain in the primary cholinergic vasodilation in rat neocortex produced by systemic administration of cismethrin. Brain Res. 450:364–368

    Article  Google Scholar 

  • Loewi, O. (1921): Über humorale Übertragbarkeit der Herznervenwirkung. I. Mitteilung. Pflügers Arch. Physiol. 189:239–242

    Article  Google Scholar 

  • Luiten, P.G.M., Gaykema, R.P.A., Traber, J. and Spencer, D.G. Jr. (1987): Cortical projection patterns of magnocellular basal nucleus subdivisions as revealed by anterogradely transported Phaseolus vulgaris leucoagglutinin. Brain Res. 413:229–250

    Article  Google Scholar 

  • Mahanthappa, N.K., Gage, F.H. and Patterson, P.H. (in press): Adrenal chromaffin cells as multipotential neurons for autografts. Prog. Brain Res.

    Google Scholar 

  • Mann, D.M.A., Yates, P.O. and Marcyniuk, B. (1984): Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropathol. Appl. Neurobiol. 10:185–207

    Article  Google Scholar 

  • Martínez-Murillo, R., Blasco, I., Alvarez, F.J., Villalba, R., Solano, M.L., Montero-Caballero, M.I. and Rodrigo, J. (1988): Distribution of enkephalin-immunoreactive nerve fibres and terminals in the region of the nucleus basalis magnocellularis of the rat: a light and electron microscopic study. J. Neurocytol. 17:361–376

    Article  Google Scholar 

  • Massoulié, J. and Bon, S. (1982): The molecular forms of Cholinesterase and acetylcholinesterase in vertebrates. Ann. Rev. Neurosci. 5:57–106

    Article  Google Scholar 

  • Mautner, H.G. (1977): Choline acetyltransferase. CRC Crit. Rev. Biochem. 4:341–370

    Article  Google Scholar 

  • McCormick, D.A. (1989): Acetylcholine: distribution, receptors, and actions. Sem. Neurosci. 1:91–101

    Google Scholar 

  • McGeer, P.L., McGeer, E.G., and Peng, J.H. (1984a): Choline acetyltransferase: purification and immunohistochemical localization. Life Sci. 34:2319–2338

    Article  Google Scholar 

  • McGeer, P.L., McGeer, E.G., Suzuki, J. and Norman, M. (1984b): Cholinergic and noradrenergic systems in aging, Alzheimer’s disease and Down’s syndrome. Soc. Neurosci. Abstr. 10:995

    Google Scholar 

  • McGeer, P.L., McGeer, E.G., Suzuki, J., Dolman, C.E. and Nagai, T. (1984c): Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain. Neurol. 34:741–745

    Article  Google Scholar 

  • Meier, R., Becker-André, M., Götz, R., Heumann, R., Shaw, A. and Thoenen, H. (1986): Molecular cloning of bovine and chick nerve growth factor (NGF): delineation of conserved and unconserved domains and their relationship to the biological activity and antigenicity of NGF. EMBO. J. 5:1489–1493

    Google Scholar 

  • Melander, T. and Staines, W.A. (1986): A galanin-like peptide coexists in putative cholinergic somata of the septum-basal forebrain complex and in acetylcholinesterase containing fibers and varicosities within the hippocampus in the owl monkey (Aotus trivirgatus). Neurosci. Lett. 68:17–22

    Article  Google Scholar 

  • Melander, T., Staines, W.A., Hökfelt, T., Rökaeus, A., Eckenstein, F., Salvaterra, P.M. and Wainer, B.H. (1985): Galanin-like immunoreactivity in cholinergic neurons of the septum-basal forebrain complex projecting to the hippocampus of the rat. Brain Res. 360:130–138

    Article  Google Scholar 

  • Mesulam, M.-M., (1985): Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemispheric specialization. In: Principles of Behavioral Neurology. Mesulam, M.-M., ed. Philadelphia: F. A. Davis, 1985, pp 1–70

    Google Scholar 

  • Mesulam, M.-M., and Geula, C. (1988a): Acetylcholinesterase-rich pyramidal neurons in the human neocortex and hippocampus: absence at birth, development during the life span, and dissolution in Alzheimer’s disease. Ann. Neurol. 24:765–773

    Article  Google Scholar 

  • Mesulam, M.-M., and Geula, C. (1988b): Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J. Comp. Neurol. 275:216–240

    Article  Google Scholar 

  • Mesulam, M.-M., and Geula, C. (1990): Shifting patterns of cortical cholinesterases in Alzheimer’s disease: implications for treatment, diagnosis, and pathogenesis. In: Alzheimer’s Disease. Advances in Neurology, Vol. 51. Wurtman, R. J., Corkin, S., Growdon, J. H., Ritter-Walker, E., eds. New York: Raven Press

    Google Scholar 

  • Mesulam, M.-M., and Mufson, E.J. (1984): Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107:253–274

    Article  Google Scholar 

  • Mesulam, M.-M., and Van Hoesen, G.W. (1976): Acetylcholinesterase-rich projections from the basal forebrain of the rhesus monkey to neocortex. Brain Res. 109:152–157

    Article  Google Scholar 

  • Mesulam, M.-M., Mufson, E.J., and Wainer, B.H. (1986): Three-dimensional representation and cortical projection topography of the nucleus basalis (Ch4) in the macaque: concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilized tetramethylbenzidine method for horseradish peroxidase. Brain Res. 367:301–308

    Article  Google Scholar 

  • Mesulam, M.-M., Mufson, E.J., Levey, A.I., and Wainer, B.H. (1984): Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neurosci. 12:669–686

    Article  Google Scholar 

  • Mesulam, M.-M., Mufson, E.J., Levey, A.I., and Wainer, B. H. (1983a): Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214:170–197

    Article  Google Scholar 

  • Mesulam, M.-M., Mufson, E.J., Wainer, B.H. and Levey, A.I. (1983b): Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Chl-Ch6). Neurosci. 10:1185–1201

    Article  Google Scholar 

  • Metherate, R., Tremblay, N., and Dykes, R.W. (1987): Acetylcholine permits long-term enhancement of neuronal responsiveness in cat primary somatosensory cortex. Neurosci. 22:75–81

    Article  Google Scholar 

  • Mettler, F.A. (1942): Neuroanatomy. St. Louis: C.V. Mosby

    Google Scholar 

  • Meynert, T. (1872): Vom Gehirn der Saugetiere. In: Handbuch der Lehre von den Geweben des Menschen und Thiere, Vol. 2. Stricker, S., ed. Leipzig: Engelmann

    Google Scholar 

  • Miller, F.R., Stavraky, G.W. and Woonton, G.A. (1940): Effects of eserine, acetylcholine and atropine on the electrocorticogram. J. Neurophysiol. 3:131–138

    Google Scholar 

  • Mishkin, M. and Appenzeller, T. (1987): The anatomy of memory. Sci. Amer. 80–89

    Google Scholar 

  • Miyamoto, M., Kato, J., Narumi, S. and Nagaoka, A. (1987): Characteristics of memory impairment following lesioning of the basal forebrain and medial septal nucleus in rats. Brain Res. 419:19–31

    Article  Google Scholar 

  • Mobley, W.C., Neve, R.L., Prusiner, S.B. and McKinley, M.P. (1988): Nerve growth factor induces gene expression for prion- and Alzheimer’s beta-amyloid proteins. Proc. Natl. Acad. Sci. USA 85:9811–9815

    Article  Google Scholar 

  • Mobley, W.C., Rutkowski, J.L., Tennekoon, G.I., Buchanan, K. and Johnston, M.V. (1985): Choline acetyltransferase activity in Striaton of neonatal rats increased by nerve growth factor. Science 229:284–287

    Article  Google Scholar 

  • Mobley, W.C., Rutkowski, J.L., Tennekoon, G.I., Gemski, J., Buchanan, K. and Johnston, M.V. (1986): Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Mol. Brain Res. 1:53–62

    Article  Google Scholar 

  • Mora, F., Rolls, E.T., and Burton, M.J. (1976): Modulation during learning of the responses of neurons in the lateral hypothalamus to the sight of food. Exp. Neurol. 53:508–519

    Article  Google Scholar 

  • Mori, N., Itoh, N. and Salvaterra, P.M. (1987): Evolutionary origin of cholinergic macromolecules and thyroglobulin. Proc. Natl. Acad. Sci. USA 84:2813–2817

    Article  Google Scholar 

  • Nachmansohn, D. and Machado, A.L. (1943): The formation of acetylcholine: a new enzyme: “choline acetylase.” J. Neurophysiol. 6:397–403

    Google Scholar 

  • Nagai, T., Satoh, K., Imamoto, K. and Maeda, T. (1981): Divergent projections of catecholamine neurons of the locus coeruleus as revealed by fluorescent retrograde double labeling technique. Neurosci. Lett. 23:117–123

    Article  Google Scholar 

  • Nathanson, N.M. (1987): Molecular properties of the muscarinic acetylcholine receptor. Ann. Rev. Neurosci. 10:195–236

    Article  Google Scholar 

  • Nicolesco, I. and Nicolesco, M. (1929): Quelques données sur les centres végétatifs de la région infundibulo-tubérienne et de la frontière diencéphalo-télencéphalique. Rev. Neurol. 2:289–317

    Google Scholar 

  • Nissl, F. (1894): Der gegenwärtige Stand der Nervenzellenanatomie und irhe nächsten Ziele. Neurol. Centralbl. 14:66–75

    Google Scholar 

  • Nissl, F. (1895): Der gegenwärtige Stand der Nervenzellenanatomie und irhe nächsten Ziele. Neurol. Centralbl. 14:104–110

    Google Scholar 

  • Olton, D.S. and Wenk, G.L. (1987): Dementia: animal models of the cognitive impairments produced by degeneration of the basal forebrain cholinergic system. In: Psychopharmacology: The Third Generation of Progress. Meltzer, H.Y., ed. New York: Raven Press, pp 941–953

    Google Scholar 

  • Ottersen, O.P. (1980): Afferent connections to the amygdaloid complex of the rat and cat: II. Afferents from the hypothalamus and the basal telencephalon. J. Comp. Neurol. 194:267–289

    Article  Google Scholar 

  • Papez, J.W. and Aronson, L.R. (1934): Thalamic nuclei of Pithecus (Macacus) rhesus. I. Ventral thalamus. Arch. Neurol. Psychiatry 32:1–26

    Article  Google Scholar 

  • Parent, A., Boucher, R. and O’Reilly-Fromentin, J. (1981): Acetylcholinesterase-containing neurons in cat pallidal complex: morphological characteristics and projection towards the neocortex. Brain Res. 230:356–361

    Article  Google Scholar 

  • Parent, A., Gravel, S. and Olivier, A. (1979): The extrapyramidal and limbic systems’ relationship at the globus pallidus level: a comparative histochemical study in the rat, cat, and monkey. In: Advances in Neurology, Vol. 24. Poirier, L. J., Sourkes, T. L., Bedard, P. J., eds. New York: Raven Press

    Google Scholar 

  • Parent, A., Poirier, L.J., Boucher, R. and Butcher, L.L. (1977): Morphological characteristics of acetylcholinesterase-containing neurons in the CNS of DFP-treated monkeys. Part 2. Diencephalic medial telencephalic structures. J. Neurol. Sci. 32:9–28

    Article  Google Scholar 

  • Parent, A., Poitras, D. and Dubé, L. (1984): Comparative anatomy of central monoaminergic systems. In: Classical Transmitters in the CNS, Part I, Handbook of Chemical Neuroanatomy, Vol 2. Björklund A, Hökfelt T, eds. Amsterdam: Elsevier

    Google Scholar 

  • Parnavelas, J.G., Kelly, W. and Burnstock, G. (1985): Ultrastructural localization of choline acetyltransferase in vascular endothelial cells in rat brain. Nature 316:724–725

    Article  Google Scholar 

  • Pavlides, C., Greenstein, Y.J., Grudman, M. and Winson, J. (1988): Long-term potentiation in the dentate gyms is induced preferentially on the positive phase of θ-rhythm. Brain Res. 439:383–387

    Article  Google Scholar 

  • Paxinos, G. and Watson, C. (1986): The Rat Brain in Stereotaxic Coordinates, second edition. Sydney: Academic Press

    Google Scholar 

  • Pearson, R.C.A., Gatter, K.C. and Powell, T.P.S. (1983a): Retrograde cell degeneration in the basal nucleus in monkey and man. Brain Res. 261:321–326

    Article  Google Scholar 

  • Pearson, R.C.A., Sofroniew, M.V., Cuello, A.C., Powell, T.P.S., Eckenstein, F., Esiri, M.M. and Wilcock, G.K. (1983b): Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Res. 289:375–379

    Article  Google Scholar 

  • Peng, J.H., Kimura, H., McGeer, P.L. and McGeer, E.G. (1981): Anti-choline acetyltransferase fragments antigen binding (Fab) for immunohistochemistry. Neurosci. Lett. 21:281–285

    Article  Google Scholar 

  • Peralta, E.G., Winslow, J.W., Ashkenazi, A., Smith, D.H., Ramachandran, J. and Capon, D.J. (1988): Structural basis of muscarinic acetylcholine receptor subtype diversity. Trends Pharmacol. Sci. 9:6–11

    Article  Google Scholar 

  • Perry, E. K., Gibson, P. H., Blessed, G., Perry, R. H. and Tomlinson, B. E. (1977): Neurotransmitter enzyme abnormalities in senile dementia. J. Neurol. Sci. 34:247–265

    Article  Google Scholar 

  • Perry, E. K., Tomlinson, B.E., Blessed, G., Bergmann, K., Gibson, P.H. and Perry, R.H. (1978): Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. 2:1457–1459

    Article  Google Scholar 

  • Perry, R.H., Candy, J.M., Perry, E.K., Irving, D., Blessed, G., Fairbairn, A.F. and Tomlinson, B.E. (1982): Extensive loss of choline acetyltransferase activity is not reflected by neuronal loss in the nucleus of Meynert in Alzheimer’s disease. Neurosci. Lett. 33:311–315

    Article  Google Scholar 

  • Phelps, C.H., Gage, F.H., Growdon, J.H., Hefti, F., Harbaugh, R., Johnston, M.V., Khachaturian, Z.S., Mobley, W.C., Price, D.L., Raskind, M., Simpkins, J., Thal, L.J. and Woodcock, J. (1989): Potential use of nerve growth factor to treat Alzheimer’s disease. Neurobiol. Aging 10:205–207

    Article  Google Scholar 

  • Pilleri, G. (1962): Über die Verbindungen des Nucleus basalis Meynert mit der Temporalhirnrinde. Acta Anat. 50:389

    Google Scholar 

  • Pilleri, G. (1966a): The Kluver-Bucy syndrome in man. A clinico-anatomical contribution to the function of the medial temporal lobe structures. Psychiatr. Neurol. (Basel) 152:65–103

    Article  Google Scholar 

  • Pilleri, G. (1966b): Weitere Beobachtung zur Frage der Projektion des Ganglion basale Meynert (Nucleus ansae lenticularis) beim Menschen. Acta Anat. 65:138–145

    Article  Google Scholar 

  • Pilleri, G. (1966c): Zur Frage der Verbindungen des Ganglion basale von Meynert (Nucleus ansae lenticularis) mit der Temporalrinde beim Menschen. J. Hirnforsch. 8:343–357

    Google Scholar 

  • Pope, A., Hess, H.H. and Lewin, E. (1964): Microchemical pathology of the cerebral cortex in pre-senile dementias. Trans. Am. Neurol. Assoc. 89:15–16

    Google Scholar 

  • Price, D.L., Cork, L.C., Struble, R.G., Whitehouse, P.J., Kitt, C.A. and Walker, L.C. (1985): The functional organization of the basal forebrain cholinergic system in primates and the role of this system in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 444:287–295

    Article  Google Scholar 

  • Price, D.L., Koo, E.H., Wagster, M.V., Walker, L.C., Wenk, G.L., Applegate, M.D., Kitt, C.A. and Cork, L.C. (1990): Behavioral, cellular, and molecular biological studies of aged nonhuman primates. In: Alzheimer’s Disease. Advances in Neurology, Vol. 51. Wurtman, R.J., Corkin, S., Growdon, J.H., Ritter-Walker, E., eds. New York: Raven Press

    Google Scholar 

  • Price, D. L., Martin, L. J., Koo, E. H., Sisodia, S. S., Koliatsos, V.E. and Cork, L.C (in press): Alzheimer’s disease and animal models. In: Molecular Mechanisms of Aging. Schettler, G., Beyreuther, K., eds. Berlin: Springer-Verlag

    Google Scholar 

  • Price, J.L. and Amaral, D.G. (1981): An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci. 1:1242–1259

    Google Scholar 

  • Price, J.L. and Stern, R. (1983): Individual cells in the nucleus basalis-diagonal band complex have restricted axonal projections to the cerebral cortex in the rat. Brain Res. 269:352–356

    Article  Google Scholar 

  • Ramón y Cajal, S. (1928): Degeneration and Regeneration of the Nervous System, Vol. II. May, R. M., ed. and transl. London: Oxford University Press

    Google Scholar 

  • Ramón y Cajal, S. (1911): Histologie du Système Nerveux de l’Homme et des Vertébrés, Tome II. Paris: A Maloine

    Google Scholar 

  • Ramon-Moliner, E. and Nauta, W.J.H. (1966): The isodendritic core of the brain stem. J. Comp. Neurol. 126:311–336

    Article  Google Scholar 

  • Rao, M., Landis, S.C. and Patterson, P.H. (1989): Comparison of three factors inducing cholinergic properties in cultured sympathetic neurons. Soc. Neurosci. Abstr. 15:1362

    Google Scholar 

  • Reichert, C. B. (1861): Der Bau Des Menschlichen Gehirns. Leipzig: Verlag von Wilhelm Engelmann

    Google Scholar 

  • Reil, J.C. (1809): Untersuchungen über den Ban des grossen Gehirns in Mehschen. a. Das Hirnschenkel-System oder die Hirnschenkel-Organisation im grossen Gehirn. Arch. Physiol. 9:147–171

    Google Scholar 

  • Richardson, R.T. and DeLong, M.R. (1986): Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey. Brain Res. 399:364–368

    Article  Google Scholar 

  • Richardson, R.T. and DeLong, M.R. (1988): A reappraisal of the functions of the nucleus basalis of Meynert. Trends Neurosci. 11:264–267

    Article  Google Scholar 

  • Richardson, R.T., Mitchell, S.J., Baker, F.H. and DeLong, M.R. (1988): Responses of nucleus basalis of Meynert neurons in behaving monkeys. In: Cellular Mechanisms of Conditioning and Behavioral Plasticity. Woody, C.D., Alkon, D.L., McGaugh, J.L., eds. New York: Plenum Publishing Corporation

    Google Scholar 

  • Riley, H.A. (1943): An Atlas of the Basal Ganglia, Brain Stem and Spinal Cord. Based on Myelin-Stained Material. Baltimore: Williams & Wilkins

    Google Scholar 

  • Rinne, J.O., Paljärvi, L. and Rinne, U.K. (1987): Neuronal size and density in the nucleus basalis of Meynert in Alzheimer’s disease. J. Neurol. Sci. 79:67–76

    Article  Google Scholar 

  • Rogers, J.D., Brogan, D. and Mirra, S.S. (1985): The nucleus basalis of Meynert in neurological disease: a quantitative morphological study. Ann. Neurol. 17:163–170

    Article  Google Scholar 

  • Rosenberg, M.B., Friedmann, T., Robertson, R.C., Tuszynski, M., Wolff, J.A., Breakefield, X.O. and Gage, F.H. (1988): Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242: 1575–1581

    Article  Google Scholar 

  • Rossor, M.N. (1981): Parkinson’s disease and Alzheimer’s disease as disorders of the isodendritic core. Br. Med. J. 283:1588–1590

    Article  Google Scholar 

  • Rossor, M.N. (1982): Dementia. Lancet 2:1200–1204

    Article  Google Scholar 

  • Russchen, F.T., Amaral, D.G. and Price, J.L. (1985): The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J. Comp. Neurol. 242:1–27

    Article  Google Scholar 

  • Rye, D.B., Wainer, B.H., Mesulam, M.-M., Mufson, E.J., and Saper, C.B. (1984): Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neurosci. 13:627–643

    Article  Google Scholar 

  • Saadat, S., Sendtner, M. and Rohrer, H. (1989): Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture. J. Cell Biol. 108:1807–1816

    Article  Google Scholar 

  • Salvaterra, P.M. (1987): Molecular biology and neurobiology of choline acetyltransferase. Mol. Neurobiol. 1:247–280

    Article  Google Scholar 

  • Saper, C.B. (1984): Organization of cerebral cortical afferent systems in the rat. I. Magnocellular basal nucleus. J. Comp. Neurol. 222:313–342

    Article  Google Scholar 

  • Saper, C.B. (1987): Diffuse cortical projection systems: anatomical organization and role in cortical function. In: Handbook of Physiology, Section 1: The Nervous System, Vol. V, Higher Functions of the Brain, Part 1. Mountcastle VB, ed. Bethesda, Maryland: American Physiological Society

    Google Scholar 

  • Saper, C.B., Swanson, L.W. and Cowan, W.M. (1976): The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J. Comp. Neurol. 169:409–442

    Article  Google Scholar 

  • Schatteman, G.C., Gibbs, L., Lanahan, A.A., Claude, P. and Bothwell, M. (1988): Expression of NGF receptor in the developing and adult primate central nervous system. J. Neurosci. 8:860–873

    Google Scholar 

  • Schwab, M.E., Otten, U., Agid, Y. and Thoenen, H. (1979): Nerve growth factor (NGF) in the rat CNS: absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res. 168:473–483

    Article  Google Scholar 

  • Segal, M. (1978): The acetylcholine receptor in the rat hippocampus; nicotinic, muscarinic or both? Neuropharmacol. 17:619–623

    Article  Google Scholar 

  • Seiler, M. and Schwab, M.E. (1984): Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res. 300:33–39

    Article  Google Scholar 

  • Semba, K., Reiner, P.B., McGeer, E.G., and Fibiger, H.C. (1988a): Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J. Comp. Neurol. 267:433–453

    Article  Google Scholar 

  • Semba, K., Reiner, P.B., McGeer, E.G., and Fibiger, H.C. (1988b): Morphology of cortically projecting basal forebrain neurons in the rat as revealed by intracellular iontophoresis of horseradish peroxidase. Neurosci. 2:637–651

    Google Scholar 

  • Shelton, D.L. and Reichardt, L.F. (1986): Studies on the expression of the nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proc. Nail. Acad. Sci. USA 83:2714–2718

    Article  Google Scholar 

  • Shute, C.C.D. and Lewis, P.R. (1967): The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497–520

    Article  Google Scholar 

  • Sillito, A.M. and Kemp, J.A. (1983): Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res. 289:143–155

    Article  Google Scholar 

  • Simon, H., LeMoal, M. and Calas, A. (1979): Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H]leucine and horseradish peroxidase. Brain Res. 178:17–40

    Article  Google Scholar 

  • Smith, Y. and Parent, A. (1984): Distribution of acetylcholinesterase-containing neurons in the basal forebrain and upper brainstem of the squirrel monkey (Saimiri sciureus). Brain Res. Bull. 12:95–104

    Article  Google Scholar 

  • Snider, W.D. and Johnson, E.M. Jr. (1989): Neurotrophic molecules. Ann. Neurol. 26:489–506

    Article  Google Scholar 

  • Sofroniew, M.V. and Isacson, O. (1988): Distribution of degeneration of cholinergic neurons in the septum following axotomy in different portions of the fimbria-fornix: a correlation between degree of cell loss and proximity of neuronal somata to the lesion. J. Chem. Neuroanat. 1:327–337

    Google Scholar 

  • Sofroniew, M.V., Pearson, R.C.A., Eckenstein, F., Cuello, A.C. and Powell, T.P.S. (1983): Retrograde changes in cholinergic neurons in the basal forebrain of the rat following cortical damage. Brain Res. 289:370–374

    Article  Google Scholar 

  • Stephan, H. and Andy, O.J. (1962): The septum. (A comparative study on its size in insectivores and primates.) J. Hirnforsch. 9:229–244

    Google Scholar 

  • Stephan, H. and Andy, O.J. (1964): Cytoarthitectonics of the septal nuclei in old world monkeys (Cercopithecus and Colobus). J. Hirnforsch. 7:1–23

    Google Scholar 

  • Steriade, M., Parent, A., Paré, D. and Smith, Y. (1987): Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei. Brain Res. 408:372–376

    Article  Google Scholar 

  • Sterman, A.B. and Schaumburg, H.H. (1980): Neurotoxicity of selected drugs. In: Experimental and Clinical Neurotoxicology. Spencer, P. S., Schaumburg, H. H., eds. Baltimore: Williams & Wilkins

    Google Scholar 

  • Stewart, D.J., MacFabe, D.F. and Vanderwolf, C.H. (1984): Cholinergic activation of the electrocorticogram: role of the substantia innominata and effects of atropine and quinuclidinyl benzilate. Brain Res. 322:219–232

    Article  Google Scholar 

  • Strömberg, I., Wetmore, C.J., Ebendal, T., Ernfors, P., Persson, H. and Olson, L. (1990): Rescue of basal forebrain cholinergic neurons after implantation of genetically modified cells producing recombinant NGF. J. Neurosci. Res. 25:405–411

    Article  Google Scholar 

  • Struble, R.G., Lehmann, J., Mitchell, S J., McKinney, M., Price, D.L., Coyle, J.T. and DeLong, M.R. (1986): Basal forebrain neurons provide major cholinergic innervation of primate neocortex. Neurosci. Lett. 66:215–220

    Article  Google Scholar 

  • Sugiura, Y., Lee, C.L. and Perl, E.R. (1986): Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 234:358–361

    Article  Google Scholar 

  • Swanson, L.W. (1976): An autoradiographic study of the efferent connections of the preoptic region in the rat. J. Comp. Neurol. 167:227–256

    Article  Google Scholar 

  • Swanson, L.W. and Cowan, W.M. (1979): The connections of the septal region in the rat. J. Comp. Neurol. 186:621–655

    Article  Google Scholar 

  • Swanson, L.W., Simmons, D.M., Whiting, P.J. and Lindstrom, J. (1987): Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. J. Neurosci. 7:3334–3342

    Google Scholar 

  • Szerb, J.C. (1967): Cortical acetylcholine release and electroencephalographic arousal. J. Physiol. 192:329–343

    Google Scholar 

  • Tagliavini, F., Pilleri, G., Bouras, C. and Constantinidis, J. (1984): The basal nucleus of Meynert in patients with progressive supranuclear palsy. Neurosci. Lett. 44:37–42

    Article  Google Scholar 

  • Tagliavini, F. and Pilleri, G. (1983): Neuronal counts in basal nucleus of Meynert in Alzheimer disease and in simple senile dementia. Lancet 1:469–470

    Article  Google Scholar 

  • Taylor, P. (1985): Cholinergic agonists. In: The Pharmacological Basis of Therapeutics, seventh edition. Gilman, A.G., Goodman, L.S., Rall, T.W., Murad, F., eds. New York: Macmillan Publishing Company

    Google Scholar 

  • Taylor, P. and Brown, J.H. (1989): Acetylcholine. In: Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, fourth edition. Siegel, G.J. et al., eds. New York: Raven Press

    Google Scholar 

  • Thal, L.J., Fuld, P.A., Masur, D.M. and Sharpless, N.S. (1983): Oral physostigmine and lecithin improve memory in Alzheimer disease. Ann. Neurol. 13: 491–496

    Article  Google Scholar 

  • Tuček, S. (1982): The synthesis of acetylcholine in skeletal muscles of the rat. J. Physiol. 322:53–69

    Google Scholar 

  • van der Kooy, D. and Hattori, T. (1980): Dorsal raphe cells with collateral projections to the caudate-putamen and substantia nigra: a fluorescent retrograde double labeling study in the rat. Brain Res. 186:1–7

    Article  Google Scholar 

  • Vertes, R.P. and Martin, G.F. (1988): Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J. Comp. Neurol. 275:511–54

    Article  Google Scholar 

  • von Buttlar-Brentano, K. (1952): Pathohistologische Feststellungen am Basalkern Schizophrener. J. Nerv. Ment. Dis. 116:646–653

    Article  Google Scholar 

  • von Kölliker, A. (1896): Handbuch der Gewebelehre des Menschen, Vol. 2 6th edition. Leipzig: Engelmann

    Google Scholar 

  • Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J. and Swanson, L.W. (1989): Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J. Comp. Neurol. 284:314–335

    Article  Google Scholar 

  • Walker, L.C., Kitt, C.A., DeLong, M.R. and Price, D.L. (1985): Noncollateral projections of basal forebrain neurons to frontal and parietal neocortex in primates. Brain Res. Bull. 15:307–314

    Article  Google Scholar 

  • Walker, L.C., Koliatsos, V.E., Kitt, C.A., Richardson, R.T., Rökaeus, A. and Price, D.L. (1989a): Peptidergic neurons in the basal forebrain magnocellular complex of the rhesus monkey. J. Comp. Neurol. 280:272–282

    Article  Google Scholar 

  • Walker, L.C., Price, D.L. and Young, W.S. III (1989b): GABAergic neurons in the primate basal forebrain magnocellular complex. Brain Res. 499:188–192

    Article  Google Scholar 

  • Walker, L.C., Price, D.L. and Young, W.S. III (1989c): Galanin mRNA in the primate nucleus basalis of Meynert. Soc. Neurosci. Abstr. 15:407

    Google Scholar 

  • Wenk, H., Bigl, V. and Meyer, U. (1980): Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats. Brain Res. Rev. 2:295–316

    Article  Google Scholar 

  • Wenk, G.L., Cribbs, B. and McCall, L. (1984): Nucleus basalis magnocellularis: optimal coordinates for selective reduction of choline acetyltransferase in frontal neocortex by ibotenic acid injections. Exp. Brain Res. 56:335–340

    Article  Google Scholar 

  • Whitehouse, P.J., Hedreen, J.C., White, C.L. III and Price, D.L. (1983): Basal forebrain neurons in the dementia of Parkinson disease. Ann. Neurol. 13:243–248

    Article  Google Scholar 

  • Whitehouse, P.J., Price, D.L., Clark, A.W., Coyle, J.T. and DeLong, M.R. (1981): Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10:122–126

    Article  Google Scholar 

  • Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T. and DeLong, M.R. (1982): Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  Google Scholar 

  • Whitlock, D.G. and Nauta, W.J.H. (1956): Subcortical projections from the temporal neocortex in macaca mulatta. J. Comp. Neurol. 106:183–212

    Article  Google Scholar 

  • Whittemore, S.R., Holets, V.R. and Levy, D.J. (1989): Transplantation of a hippocampal, NGF-secreting, temperature-sensitive cell line into adult rats with fimbria-fornix lesions spares cholinergic septal neurons. Mol. Neurobiol. Neuropharmacol. 9:85

    Google Scholar 

  • Will, B. and Hefti, F. (1985): Behavioural and neurochemical effects of chronic intraventricular injections of nerve growth factor in adult rats with fimbria lesions. Behav. Brain Res. 17:17–24

    Article  Google Scholar 

  • Williams, L.R., Varon, S., Peterson, G.M., Wictorin, K., Fischer, W., Björklund, A. and Gage, F.H. (1986): Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci. USA 83:9231–9235

    Article  Google Scholar 

  • Wong, V. and Kessler, J.A. (1987): Solubilization of a membrane factor that stimulates levels of substance P and choline acetyltransferase in sympathetic neurons. Proc. Natl. Acad. Sci. USA 84:8726–8729

    Article  Google Scholar 

  • Woody, C.D., Swartz, B.E. and Gruen, E. (1978): Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats. Brain Res. 158:373–395

    Article  Google Scholar 

  • Woolf, N.J. and Butcher, L.L. (1982): Cholinergic projections to the basolateral amygdala: a combined Evans Blue and acetylcholinesterase analysis. Brain Res. Bull. 8:751–763

    Article  Google Scholar 

  • Woolf, N.J., Eckenstein, F. and Butcher, L. L. (1984): Cholinergic systems in the rat brain: I. Projections to the limbic telencephalon. Brain Res. Bull. 13:751–784

    Article  Google Scholar 

  • Wurtman, R.J., Blusztajn, J. K., Ulus, I.H., Lopez, G., Coviella, I., Buyukuysal, R.L., Growdon, J.H. and Slack, B.E. (1990): Choline metabolism in cholinergic neurons: implications for the pathogenesis of neurodegenerative diseases. In: Alzheimer’s Disease. Advances in Neurology, Vol. 51. Wurtman, R.J., Corkin, S., Growdon, J.H., Ritter-Walker, E., eds. New York: Raven Press

    Google Scholar 

  • Záborszky, L. (1989): Afferent connections of the forebrain cholinergic projection neurons, with special reference to monoaminergic and peptidergic fibers. In: Central Cholinergic Synaptic Transmission. Frotscher, M., Misgeld, U., eds. Basel: Birkhäuser

    Google Scholar 

  • Záborszky, L., and Cullinan, W.E. (1989): Hypothalamic axons terminate on forebrain cholinergic neurons: an ultrastructural double-labeling study using PHA-L tracing and ChAT immunocytochemistry. Brain Res. 479:177–184

    Article  Google Scholar 

  • Záborszky, L., Carlsen, J., Brashear, H.R. and Heimer, L. (1986a): Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J. Comp. Neurol. 243:488–509

    Article  Google Scholar 

  • Záborszky, L., Heimer, L., Eckenstein, F. and Léránth, C. (1986b): GABAergic input to cholinergic forebrain neurons: an ultrastructural study using retrograde tracing of HRP and double immunolabeling. J. Comp. Neurol. 250:282–295

    Article  Google Scholar 

  • Záborszky, L., Léránth, C. and Heimer, L. (1984): Ultrastructural evidence of amygdalofugal axons terminating on cholinergic cells of the rostral forebrain. Neurosci. Lett. 52:219–225

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koliatsos, V.E., Price, D.L. (1991). The Basal Forebrain Cholinergic System: An Evolving Concept in the Neurobiology of the Forebrain. In: Richardson, R.T. (eds) Activation to Acquisition. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-0556-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0556-9_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4684-0558-3

  • Online ISBN: 978-1-4684-0556-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics