Skip to main content
Log in

Acetylcholinesterase neurons in dopamine-containing regions of the brain

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

A pharmaco-histochemical regimen was used to examine the morphology and internal organization of acetylcholinesterase (AChE, EC 3.1.1.7) neurons in brain areas—the caudate-putamen nucleus, nucleus accumbens, olfactory tubercule, and substantia nigra—monoaminergically characterized in terms of their dopamine content. Intense, homogenous staining is produced in these neural regions by other histochemical protocols for AChE; individual AChE-containing neurons cannot be observed reliably or consistently. With the present technique, based on the differential regeneration of AChE in the separate subcellular compartments of the neuron (i.e., axon, dendrite, soma) after intramuscular injection ofbis-(1-methylethyl)-phosphorofluoridate (di-isopropylfluorophosphate: DFP), it was shown that AChE was associated with neurons whose cell bodies lay within the brain areas studied. Although the significance of dopaminergic-cholinergic relationships in the caudate-putamen complex, nucleus accumbens, and olfactory tubercule could not be established on the basis of these new histochemical data, arguments were presented indicating that dopamine neurons in the zona compacta of the substantia nigra also contained AChE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andén, N.-E.: Effects of oxotremorine and physostigmine on the turnover of dopamine in the corpus striatum and the limbic system. J. Pharm. Pharmacol.26, 738–740 (1974).

    Google Scholar 

  • Andén, N.-E., A. Dahlström, K. Fuxe, K. Larsson, L. Olson, andU. Ungerstedt: Ascending monoamine neurons to the telencephalon and diencephalon. Acta physiol. scand.67, 313–326 (1966 a).

    Google Scholar 

  • Andén, N.-E., K. Fuxe, B. Hamberger, andT. Hökfelt: A quantitative study on the nigro-neostriatal dopamine neuron system in the rat. Acta physiol. scand.67, 306–312 (1966 b).

    Google Scholar 

  • Austin, L., andK. A. C. James: Rates of regeneration of acetylcholinesterase in rat brain subcellular fractions following DFP inhibition. J. Neurochem.17, 705–707 (1970).

    Google Scholar 

  • Bédard, P., andL. Larochelle: Effects of section of the strionigral fibers on dopamine turnover in the forebrain of the rat. Exp. Neurol.41, 314–322 (1973).

    Google Scholar 

  • Bell, C.: Use of the direct-coloring thiocholine technique for demonstration of intracellular neuronal cholinesterases. J. Histochem. Cytochem.14, 567–570 (1966).

    Google Scholar 

  • Björklund, A., andO. Lindvall: Dopamine in dendrites of substantia nigra neurons: Suggestions for a role in dendritic terminals. Brain Res.83, 531–537 (1975).

    Google Scholar 

  • Brzin, M., V. M. Tennyson, andP. E. Duffy: Acetylcholinesterase in frog sympathetic and dorsal root ganglia. J. cell. Biol.31, 215–242 (1966).

    Google Scholar 

  • Burn, J. H., andM. J. Rand: Sympathetic postganglionic mechanism. Nature184, 163–165 (1959).

    Google Scholar 

  • Butcher, L. L., andN.-E. Andén: Effects of apomorphine and amphetamine on schedule-controlled behavior: Reversal of tetrabenazine suppression and dopaminergic correlates. European J. Pharmacol.6, 255–264 (1969).

    Google Scholar 

  • Butcher, L. L., S. M. Eastgate, andG. K. Hodge: Evidence that punctate intracerebral administration of 6-hydroxydopamine fails to produce selective neuronal degeneration—Comparison with copper sulfate and factors governing the deportment of fluids injected into brain. Naunyn-Schmiedeberg's Arch. Pharmacol.285, 31–70 (1974).

    Google Scholar 

  • Butcher, L. L., andG. K. Hodge: Ontogeny of acetylcholinesterase (AChE) in the neostriatum of rats. Abstracts of the Society for Neuroscience, Fourth Annual Meeting, p. 160 (1974).

  • Butcher, L. L., K. Talbot, andL. Bilezekjian: Localization of acetylcholinesterase within dopamine-containing neurons in the zona compacta of the substantia nigra. Proc. West. Pharmacol. Soc.18, 256–259 (1975).

    Google Scholar 

  • Butcher, S. G., andL. L. Butcher: Origin and modulation of acetylcholine in the neostriatum. Brain Res.71, 167–171 (1974).

    Google Scholar 

  • Chippendale, T. J., C. W. Cotman, M. D. Kozar, andG. S. Lynch: Analysis of acetylcholinesterase synthesis and transport in the rat hippocampus: Recovery of acetylcholinesterase activity in the septum and hippo-campus after administration of di-isopropylfluorophosphate. Brain Res.81, 485–496 (1974).

    Google Scholar 

  • Dablström, A., andK. Fuxe: Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta physiol. scand., suppl.232, 1–55 (1964).

    Google Scholar 

  • Davis, G. A., andB. W. Agranoff: Metabolic behaviour of isozymes of acetylcholinesterases. Nature220, 277–280 (1968).

    Google Scholar 

  • Eränkö, O., L. Rechardt, andL. Hänninen: Electron microscopic demonstration of cholinesterases in nervous tissue. Histochemie8, 369–376 (1967).

    Google Scholar 

  • Fibiger, H. C., andD. S. Grewaal: Neurochemical evidence for denervation supersensitivity: The effects of unilateral substantia nigra lesions on apomorphine-induced increases in neostriatal acetylcholine levels. Life Sci.15, 57–63 (1974).

    Google Scholar 

  • Friede, R. L.: A histochemical atlas of tissue oxidation in the brain stem. New York: S. Karger. 1961.

    Google Scholar 

  • Fukuda, T., andG. B. Koelle: The cytological localization of intracellular neuronal acetylcholinesterase. J. biophys. biochem. Cytol.5, 433–440 (1959).

    Google Scholar 

  • Fuxe, K., M. Goldstein, T. Hökfelt, G. Jonsson, andP. Lidbrink: Dopaminergic involvement in hypothalamic function: Extrahypothalamic and hypothalamic control. A neuroanatomical analysis. In: Advances in Neurology, Vol. 5: Second Canadian-American Conference on Parkinson's Disease (McDowell, F. H., andA. Barbeau, eds.), pp. 405–419. New York: Raven Press. 1974.

    Google Scholar 

  • Fuxe, K., T. Hökfelt, G. Jonsson, andU. Ungerstedt: Fluorescence microscopy in neuroanatomy. In: Contempory Research Methods in Neuro-anatomy (Nauta, W. J. H., andS. O. E. Ebbeson, eds.), pp. 275–314. New York: Springer-Verlag. 1970.

    Google Scholar 

  • Faxe, K., T. Hökfelt, andU. Ungerstedt: Distribution of monoamines in mammalian central nervous system by histochemical studies. In: Metabolism of Amines in the Brain (Hooper, G., ed.), pp. 10–22. London: Macmillan. 1969.

    Google Scholar 

  • Globus, A., andA. B. Schiebel: Synaptic loci in visual cortical neurons of the rabbit: The specific afferent radiation. Exp. Neurol.18, 116–131 (1967).

    Google Scholar 

  • Gulley, R. L., andR. L. Wood: The fine structure of the neurons in the rat substantia nigra. Tissue and Cell3, 675–690 (1971).

    Google Scholar 

  • Hanker, J. S., L. P. Thornburg, P. E. Yates, andH. G. Moore, III: The demonstration of cholinesterases by the formation of osmium blacks at the sites of Hatchett's Brown. Histochemie37, 223–242 (1973).

    Google Scholar 

  • Hardwick, D. C., andA. C. Palmer: Effect of formalin fixation on cholinesterase in sheep brain. Quart. J. exp. Physiol.46, 350–352 (1961).

    Google Scholar 

  • Hökfelt, T., K. Fuxe, andM. Goldstein: Immunohistochemical studies on monoamine-containing cell systems. Brain Res.62, 461–469 (1973).

    Google Scholar 

  • Jacobowitz, D. M., andM. Palkovits: Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon). J. comp. Neurol.157, 13–28 (1974).

    Google Scholar 

  • Javoy, F., Y. Agid, D. Bouvet, andJ. Glowinski: Changes in neostriatal DA metabolism after carbachol or atropine microinjections into the substantia nigra. Brain Res.68, 253–260 (1974).

    Google Scholar 

  • Jones, B. E., P. Guyenet, A. Cheramy, C. Gauchy, andJ. Glowinksi: Thein vivo release of acetylcholine from cat caudate nucleus after pharmacological and surgical manipulation of dopaminergic nigrostriatal neurons. Brain Res.64, 355–369 (1973).

    Google Scholar 

  • Karnovsky, M. J., andL. Roots: A “direct-coloring” thiocholine method for cholinesterase. J. Histochem. Cytochem.12, 219–221 (1964).

    Google Scholar 

  • Kemp, J. M., andT. P. S. Powell: The structure of the caudate nucleus of the cat: Light and electron microscopy. Phil. Trans. Roy. Soc. (London) B262, 383–401 (1971).

    Google Scholar 

  • Koelle, G. B.: The histochemical localization of cholinesterases in the central nervous system of the rat. J. comp. Neurol.100, 211–228 (1954).

    Google Scholar 

  • Koenig, E.: Synthetic mechanisms in the axon. III. Stimulation of acetylcholinesterase synthesis by actinomycin-D in the hypoglossal nerve. J. Neurochem.14, 429–435 (1967).

    Google Scholar 

  • Kreutzberg, G. W., P. Schubert, L. Tóth, andE. Rieske: Intradendritic transport to postsynaptic sites. Brain Res.62, 399–404 (1973).

    Google Scholar 

  • Kreutzberg, G. W., andL. Tóth: Dendritic secretion: A way for the neuron to communicate with the vasculature. Naturwissenschaften61, 37–39 (1974).

    Google Scholar 

  • Kreutzberg, G. W., L. Tóth, andH. Kaiya: AChE as marker for dendritic transport and secretion. In: Advances in Neurology, Vol. 12: Physiology and Pathology of Dendrites (Kreutzberg, G. W., ed.). New York: Raven Press. 1975 (in press).

    Google Scholar 

  • Lewis, P. R., andC. C. D. Shute: The cholinergic limbic system: Projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular formation, and the subfornical organ and supra-optic crest. Brain90, 521–542 (1967).

    Google Scholar 

  • Ling, E., J. Paterson, A. Privat, S. Mori, andC. P. Leblond: Investigation of glial cells in the brain of young rats. I. Identification of glial cells in the brain of young rats. J. comp. Neurol.149, 43–72 (1973).

    Google Scholar 

  • Lubinska, L.: Acetylcholinesterase in mammalian peripheral nerves and characteristics of its migration. Acta neuropath. (Berl.), suppl.V, 136–143 (1971).

    Google Scholar 

  • Lynch, G. S., P. A. Lucas, andS. A. Deadwyler: The demonstration of acetylcholinesterase containing neurons within the caudate nucleus of the rat. Brain Res.45, 617–621 (1972).

    Google Scholar 

  • Martinez Rodriguez, R., A. Riba Soto, andJ. Moya Mangas: Demostracion de la activad acetilcolinesterasica con un nuevo metado histoquimica. Trab. Instit. Cajal Invest. Biol.56, 27–39 (1964).

    Google Scholar 

  • McGeer, E. G., H. C. Fibiger, P. L. McGeer, andS. Brooke: Temporal changes in amine synthesizing enzymes of rat extrapyramidal structures after hemitransections or 6-hydroxydopamine administration. Brain Res.52, 289–300 (1973).

    Google Scholar 

  • McGeer, P. L., E. G. McGeer, H. C. Fibiger, andV. Wickson: Neostriatal choline acetylase and cholinesterase following selective brain lesions. Brain Res.35, 308–314 (1971).

    Google Scholar 

  • Mensah, P., andS. A. Deadwyler: The caudate nucleus of the rat: Cell types and the demonstration of a commissural system. J. Anat. (London)117, 281–293 (1974).

    Google Scholar 

  • Mori, S., andC. P. Leblond: Identification of microglia in light and electron microscopy. J. comp. Neurol.135, 57–80 (1969 a).

    Google Scholar 

  • Mori, S., andC. P. Leblond: Electron microscopic features and proliferation of astrocytes in the corpus callosum of the rat. J. comp. Neurol.137, 197–226 (1969 b).

    Google Scholar 

  • Nacbmansobn, D.: Chemical and Molecular Basis of Nerve Activity. New York: Academic Press. 1959.

    Google Scholar 

  • Olivier, A., A. Parent, H. Simard, andL. J. Poirier: Cholinesterasic striatopallidal and striatonigral efferents in the cat and monkey. Brain Res.18, 273–282 (1970).

    Google Scholar 

  • Palkovits, M., andD. M. Jacobowitz: Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hind-brain (mesencephalon, rhombencephalon). J. comp. Neurol.157, 29–42 (1974).

    Google Scholar 

  • Pearse, A. G. E.: Histochemistry: Theoretical and Applied, Vol. 2, 3rd Ed. London: Churchill Livingstone. 1972.

    Google Scholar 

  • Pellegrino, L. J., andA. J. Cushman: A stereotaxic atlas of the rat brain. New York: Appleton-Century-Crofts. 1967.

    Google Scholar 

  • Schwyn, R. C., andC. A. Fox: The primate substantia nigra: A golgi and electron microscopic study. J. für Hirnforsch.15, 95–126 (1974).

    Google Scholar 

  • Shimizu, N., andS. Ishii: Electron microscopic histochemistry of acetylcholinesterase of rat brain by Karnovsky's method. Histochemie6, 24–33 (1966).

    Google Scholar 

  • Shute, C. C. D., andP. R. Lewis: The ascending cholinergic reticular systems: Neocortical, olfactory, and subcortical projections. Brain90, 497–520 (1967).

    Google Scholar 

  • Silver, A.: The Biology of Cholinesterases. New York: American Elsevier Publishing Co., Inc. 1974.

    Google Scholar 

  • Skinner, J. E.: Neuroscience: A Laboratory Manual. Philadelphia: Saunders. 1971.

    Google Scholar 

  • Smelik, P. G., andA. M. Ernst: Role of nigro-neostriatal dopaminergic fibers in compulsive gnawing behavior in rats. Life Sci.5, 1485–1488 (1966).

    Google Scholar 

  • Smith, R. L., E. H. Strayhorn, andW. R. Mehler: Afferent connections of the substantia nigra in the rat. Abstracts of the Society for Neuroscience, Third Annual Meeting, p. 185 (1973).

  • Stadler, H., K. G. Lloyd, andG. Bartholini: Dopaminergic inhibition of striatal cholinergic neurons: Synergistic blocking of γ-butyrolactone and neuroleptic drugs. Naunyn-Schmiedeberg's Arch. Pharmacol.283, 129–134 (1974).

    Google Scholar 

  • Storm-Matbisen, J.: High affinity uptake of GABA in presumed gaba-ergic nerve endings in rat brain. Brain Res.84, 409–427 (1975).

    Google Scholar 

  • Torack, R. M., andR. J. Barrnett: Fine structural localization of cholinesterase activity in the rat brain stem. Exp. Neurol.6, 224–244 (1962).

    Google Scholar 

  • Ungerstedt, U.: Stereotaxic mapping of the monoamine pathways in the rat brain. Acta physiol. scand., suppl.367, 1–48 (1971).

    Google Scholar 

  • Volle, R. L.: Cholinomimetic drugs. In: Drill's Pharmacology in Medicine (DiPalma, J. R., ed.), pp. 584–607. New York: McGraw-Hill. 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butcher, L.L., Talbot, K. & Bilezikjian, L. Acetylcholinesterase neurons in dopamine-containing regions of the brain. J. Neural Transmission 37, 127–153 (1975). https://doi.org/10.1007/BF01663629

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01663629

Key words

Navigation