Skip to main content

Growth Factors and Cerebral Ischemia

  • Chapter
Current Review of Cerebrovascular Disease

Abstract

Growth factors are endogenous signaling proteins that initiate cellular processes leading to cell survival, growth, and differentiation. They bind to high-affinity cellular receptors (receptor protein kinases), leading to phosphorylation and activation of various signal transduction pathways (eg, mitogen-activated protein kinase and phosphatidylinositol-3 kinase pathways), which in turn results in new gene expression and protein synthesis [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Loughlin SE, Fallon JH, eds: Neurotrophic Factors. San Diego: Academic Press; 1993.

    Google Scholar 

  2. Sporn MB, Roberts AB, eds: Peptide Growth Factors and Their Receptors. New York: Springer-Verlag; 1991.

    Google Scholar 

  3. Finklestein SP: Growth factors in cerebral ischemia. In Advances in Neurology: Cellular and Molecular Mechanisms of Ischemic Brain Damage. Edited by Siesjo BK, Wieloch T. Philadelphia: Lippincott-Raven Publishers; 1996:413–417.

    Google Scholar 

  4. Finklestein SP, Kemmou A, Caday CG, et al.: Basic fibroblast growth factor protects cerebrocortical neurons against excitatory amino acid toxicity in vitro. Stroke 1993, 24(suppl I):I141–I143.

    CAS  Google Scholar 

  5. Freese A, Finklestein SP, DiFiglia M: Basic fibroblast growth factor protects striatal neurons in vitro from NMDA-receptor mediated excitotoxicity. Brain Res 1992, 575:351–355.

    Article  PubMed  CAS  Google Scholar 

  6. Mattson MP, Murrain M, Guthrie PB, et al.: Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 1989, 9:3728–3740.

    PubMed  CAS  Google Scholar 

  7. Mattson MP, Scheff SW: Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapy. J Neurotrauma 1994, 11:3–33.

    Article  PubMed  CAS  Google Scholar 

  8. Anderson KJ, Dam D, Lee S, et al.: Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo. Nature 1988, 332:360–361.

    Article  PubMed  CAS  Google Scholar 

  9. Dietrich WD, Alonso O, Busto R, et al.: Posttreatment with intravenous basic fibroblast growth factor reduces histopatho-logical damage following fluid-percussion brain injury in rats. J Neurotrauma 1996, 13:309–316.

    PubMed  CAS  Google Scholar 

  10. Kirschner PB, Henshaw R, Weise J, et al.: Basic fibroblast growth factor protects against excitotoxicity and chemical hypoxia in both neonatal and adult rats. J Cereb Blood Flow Metab 1995, 15:619–623.

    Article  PubMed  CAS  Google Scholar 

  11. Otto D, Unsicker K: Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice. J Neurosci 1990, 10:1912–1921.

    PubMed  CAS  Google Scholar 

  12. MacMillan V, Judge D, Wiseman A, et al.: Mice expressing a bovine basic fibroblast growth factor transgene in the brain show increased resistance to hypoxemic-ischemic cerebral damage. Stroke 1993, 24:1735–1739.

    Article  PubMed  CAS  Google Scholar 

  13. Höckel M, Schienger K, Doctrow S, et al.: Therapeutic angiogenesis. Arch Surg 1993, 128:423–429.

    Article  PubMed  Google Scholar 

  14. Isner IM: The role of angiogenic cytokines in cardiovascular disease. Clin Immunol Immunopathol 1996, 80:S82–S91.

    Article  PubMed  CAS  Google Scholar 

  15. Isner JM, Pieczek A, Schainfeld R, et al.: Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996, 348:370–374.

    Article  PubMed  CAS  Google Scholar 

  16. Isner JM, Walsh K, Symes J, et al.: Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation 1995, 91:2687–2692.

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi A, Sawamura Y, Houkin K, et al.: The cerebrospinal fluid in patients with moyamoya disease (spontaneous occlusion of the circle of Willis) contains high levels of basic fibroblast growth factor. Neurosci Lett 1993, 160:214–216.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshimoto T, Houkin K, Takahashi A, et al.: Angiogenic factors in moyamoya disease. Stroke 1996, 27:2160–2165.

    Article  PubMed  CAS  Google Scholar 

  19. Shimada N, Graf R, Rosner G, et al.: Ischemic flow threshold for extracellular glutamate increase in cat cortex. J Cereb Blood Flow Metab 1989, 9:603–606.

    Article  PubMed  CAS  Google Scholar 

  20. Siesjo BK, Bengtsson F: Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypo-glycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 1989, 9:127–140.

    Article  PubMed  CAS  Google Scholar 

  21. Traystman RJ, Kirsch JR, Koehler RC: Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol 1991, 71:1185–1195.

    PubMed  CAS  Google Scholar 

  22. Lauritzen M, Hansen AJ: The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab 1992, 12:223–229.

    Article  PubMed  CAS  Google Scholar 

  23. Mayevsky A, Weiss HR: Cerebral blood flow and oxygen consumption in cortical spreading depression. J Cereb Blood Flow Metab 1991, 11:829–836.

    Article  PubMed  CAS  Google Scholar 

  24. Ginsberg MD, Pulsinelli WA: The ischémic penumbra, injury thresholds, and the therapeutic window for acute stroke. Ann Neurol 1994, 36:553–554.

    Article  PubMed  CAS  Google Scholar 

  25. Mattson MP, Lovell MA, Furukawa K, et al.: Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular calcium concentration, and neurotoxicity and increase in antioxidant enzyme activities in hippocampal neurons. J Neurochem 1995, 65:1740–1751.

    Article  PubMed  CAS  Google Scholar 

  26. Cheng B, Mattson MP: NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycémie damage by stabilizing calcium homeostasis. Neuron 1991, 7:1031–1041.

    Article  PubMed  CAS  Google Scholar 

  27. Mattson MP, Zhang Y, Bose S: Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp Neurol 1993, 121:1–13.

    Article  PubMed  CAS  Google Scholar 

  28. Collazo D, Takahashi H, McKay RD: Cellular targets and trophic functions of neurotrophin-3 in the developing rat hippocampus. Neuron 1992, 9:643–656.

    Article  PubMed  CAS  Google Scholar 

  29. Mattson MP, Kumar KN, Wang H, et al.: Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons. J Neurosci 1993, 13:4575–4588.

    PubMed  CAS  Google Scholar 

  30. Folkman J, Klagsbrun M: Angiogenic factors. Science 1987, 235:442–447.

    Article  PubMed  CAS  Google Scholar 

  31. Pettman B, Weibel M, Sensenbrenner M, et al.: Purification of two astroglial growth factors from bovine brain. FEBS Lett 1985, 189:102–108.

    Article  Google Scholar 

  32. Walicke PA: Basic and acidic fibroblast growth factors have trophic effects on neurons from multiple CNS regions. J Neurosci 1988, 8:2618–2627.

    PubMed  CAS  Google Scholar 

  33. Nozaki K, Finklestein SP, Beal MF: Basic fibroblast growth factor protects against hypoxia-ischemia and NMDA neurotoxicity in neonatal rats. J Cereb Blood Flow Metab 1993, 13:221–228.

    Article  PubMed  CAS  Google Scholar 

  34. Koketsu N, Berlove DJ, Moskowitz MA, et al.: Pretreatment with intraventricular basic fibroblast growth factor (bFGF) decreases infarct size following focal cerebral ischemia in rats. Ann Neurol 1994,35:451–457.

    Article  PubMed  CAS  Google Scholar 

  35. Fisher M, Meadows M-E, Do T, et al.: Delayed treatment with intravenous basic fibroblast growth factor reduces infarct size following permanent focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1995, 15:953–959.

    Article  PubMed  CAS  Google Scholar 

  36. Ren JM, Finklestein SP: Time window of infarct reduction by intravenous basic fibroblast growth factor in focal cerebral ischemia. Eur J Pharmacol 1997, 327:11–16.

    Article  PubMed  CAS  Google Scholar 

  37. Jiang N, Finklestein SP, Do T, et al.: Delayed intravenous administration of basic fibroblast growth factor (bFGF) reduces infarct volume in a model of focal cerebral ischemia/reperfu-sion in the rat. J Neurol Sci 1996, 139:173–179.

    Article  PubMed  CAS  Google Scholar 

  38. Cuevas P, Carceller F, Ortega S, et al.: Hypotensive activity of fibroblast growth factor. Science 1991, 254:1208–1210.

    Article  PubMed  CAS  Google Scholar 

  39. Rosenblatt S, Irikura K, Caday CG, et al.: Basic fibroblast growth factor (bFGF) dilates rat pial arterioles. J Cereb Blood Flow Metab 1994, 14:70–74.

    Article  PubMed  CAS  Google Scholar 

  40. Huang Z, Chen K, Huang PL, et al.: bFGF ameliorates focal ischemic injury by blood flow-independent mechanisms in eNOS mutant mice. Am J Physiol 1996, 272:H1401–H1405.

    Google Scholar 

  41. Tatlisumak T, Takano K, Carano RA, et al.: Effect of basic fibroblast growth factor on experimental focal ischemia studied by diffusion-weighted and perfusion imaging. Stroke 1996, 27:2292–2297.

    Article  PubMed  CAS  Google Scholar 

  42. Ay I, Sugimori H, Finkelstein S: Basic fibroblast growth factor (bFGF) decreases DNA fragmentation and increases Bd-2 expression following stroke in rats. Stroke 2000, 31:275–346.

    Article  Google Scholar 

  43. Mazue G, Bertolero F, Jacob C, et al.: Predinical and clinical studies with recombinant human basic fibroblast growth factor. Ann N Y Acad Sci 1991, 638:329–340.

    Article  PubMed  CAS  Google Scholar 

  44. Mazue G, Bertolero F, Garofano L, et al.: Experience with the predinical assessment of basic fibroblast growth factor (bFGF). Toxicol Lett 1992, 64-65:329–338.

    Article  PubMed  CAS  Google Scholar 

  45. Mazue G, Newman AJ, Scampini G, et al.: The histopathology of kidney changes in rats and monkeys following intravenous administration of massive doses of FCE 26184, human basic fibroblast growth factor. Toxicol Pathol 1993, 21:490–501.

    Article  PubMed  CAS  Google Scholar 

  46. Okumura M, Yajima M, Nishimura T, et al.: General pharmacology of recombinant human basic fibroblast growth factor. Arzneimittelforschung 1996, 46:727–739.

    PubMed  CAS  Google Scholar 

  47. Gross JL, Herblin WF, Dusak BA, et al.: Effects of modulation of basic fibroblast growth factor on tumor growth in vivo. J Natl Cancer Inst 1993, 85:121–131.

    Article  PubMed  Google Scholar 

  48. Leith JT, Michelson S: Effects of administration of basic fibroblast growth factor on hypoxic fractions in xenografted DLD-2 human tumors: time dependence. Br J Cancer 1993, 68:727–731.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. FIBLAST Safety Study Group: Clinical safety trial of intravenous basic fibroblast growth factor (bFGF, FIBLAST©) in acute stroke. In 23rd International Joint Conference on Stroke and Cerebral Circulation Abstract Book, 1998:18.

    Google Scholar 

  50. Clark W, Schim J, et al.: Trafermin in acute stroke: results of a phase II/HI randomized efficacy study. Neurology 2000, 54:S3:A88.

    Google Scholar 

  51. Bogousslavsky J, Donnan G, et al.: Fibroblast (Trafermin) in acute stroke: results of the European-Australian phase II/III safety and efficacy trial. Cerebrovasc Dis 2000, 10:S2:l–l 16.

    Google Scholar 

  52. Cramer SC, Finklestein SP: Stroke recovery. In The Atlas of Clinical Neurology Edited by Rosenberg RN. Philadelphia: Current Medicine; 1998.

    Google Scholar 

  53. Jones TA, Schallert T: Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci 1994, 14:2140–2152.

    PubMed  CAS  Google Scholar 

  54. Cramer SC, Nelles G, Benson RR, et al.: A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997, 28:2518–2527.

    Article  PubMed  CAS  Google Scholar 

  55. Finklestein SP: Growth factors in stroke. In Brain Ischemia: Basic Concepts and Clinical Relevance. Edited by Caplan LR. London: Springer-Verlag; 1995:37–41.

    Chapter  Google Scholar 

  56. Finklestein SP, Apostolides PL Caday CG, et al.: Increased basic fibroblast growth factor (bFGF) immunoreactivity at the site of focal brain wounds. Brain Res 1988, 460:253–259.

    Article  PubMed  CAS  Google Scholar 

  57. Logan A, Frautschy SA, Gonzalez A-M, et al.: A time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (fig) following a localized cortical brain injury. J Neurosci 1992, 12:3828–3837.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Speliotes EK, Caday CG, Do T, et al.: Increased expression of basic fibroblast growth factor (bFGF) following focal cerebral infarction in the rat Mol Brain Res 1996, 39:31–42.

    Article  PubMed  CAS  Google Scholar 

  59. Kawamata T, Speliotes EK, Finklestein SP: The role of polypep-tide growth factors in recovery from stroke. In Brain Plasticity. Advances in Neurology. Edited by Freund H-J, Sabel BA, Witte OW. Philadelphia: Lippincott-Raven Publishers; 1997:379–384.

    Google Scholar 

  60. Yamada K, Kinoshita K, Kohmura E, et al.: Basic fibroblast growth factor prevents thalamic degeneration after cortical infarction. J Cereb Blood Flow Metab 1991, 11:472–478.

    Article  PubMed  CAS  Google Scholar 

  61. Himmelseher S, Pfenninger E, Georgieff M: Effects of basic fibroblast growth factor on hippocampal neurons after axonal injury. J Trauma 1997, 42:659–664.

    Article  PubMed  CAS  Google Scholar 

  62. Kawamata T, Alexis NE, Dietrich WD, et al.: Intracisternal basic fibroblast growth factor (bFGF) enhances behavioral recovery following focal cerebral infarction in the rat. J Cereb Blood Flow Metab 1996, 16:542–547.

    Article  PubMed  CAS  Google Scholar 

  63. Kawamata T, Dietrich DW, Schallert T, et al.: Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci USA 1997, 94:8179–8184.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Jones WK, Richmond EA, White K, et al.: Osteogenic protein-1 (OP-1) expression and processing in Chinese hamster ovary cells: isolation of a soluble complex containing the mature and pro-domains of OP-1. Growth Factors 1994, 11:215–225.

    Article  PubMed  CAS  Google Scholar 

  65. Lein P, Johnson M, Guo X, et al.: Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 1995, 15:597–605.

    Article  PubMed  CAS  Google Scholar 

  66. Withers G, Higgins D, Rueger D, et al.: Treatment with osteogenic protein-1 increases synaptogenesis in cultured hippocampal neurons. Soc Neurosci Abstr 1997, 23:1433.

    Google Scholar 

  67. Kawamata T, Ren JM, Chan TCK, et al.: Intracisternal osteogenic protein-1 enhances functional recovery following focal stroke. Neuroreport, in press.

    Google Scholar 

  68. Ren J, Kaplan PL, Charette MF, et al.: Time window of intracisternal osteogenic protein-1 in enhancing functional recovery after stroke. Neuropharmacology 2000, 39:860–865.

    Article  PubMed  CAS  Google Scholar 

  69. Beck T, Lindholm D, Castern E, et al.: Brain-derived neurotrophic factor protects against ischémic cell damage in rat hippocampus. J Cereb Blood Flow Metab 1994, 14:689–692.

    Article  PubMed  CAS  Google Scholar 

  70. Tsukahara T, Yonekawa Y, Tanaka K, et al.: The role of brain-derived neurotrophic factor in transient forebrain ischemia in the rat brain. Neurosurgery 1994, 34:323–331.

    Article  PubMed  CAS  Google Scholar 

  71. Cheng Y, Gidday JM, Yan Q, et al.: Marked age-dependent neuroprotection by brain-derived neurotrophic factor against neonatal hypoxic-ischemic brain injury. Ann Neurol 1997, 41:521–529.

    Article  PubMed  CAS  Google Scholar 

  72. Schabitz WR, Schwab S, Spranger M, et al.: Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1997, 17:500–506.

    Article  PubMed  CAS  Google Scholar 

  73. Sasaki K, Oomura Y, Suzuki K, et al.: Acidic fibroblast growth factor prevents death of hippocampal CA1 pyramidal cells following ischemia. Neurochem Int 1992, 21:397–402.

    Article  PubMed  CAS  Google Scholar 

  74. MacMillan V, Walton-Roche K, Davis J: Acidic fibroblast growth factor infusion reduces ischémic CA1 hippocampal damage in the gerbil. Can J Neurol Sci 1993, 20:37–40.

    PubMed  CAS  Google Scholar 

  75. Yamada K, Kinoshita K, Kohmura E, et al.: Basic fibroblast growth factor prevents thalamic degeneration after cortical infarction. J Cereb Blood Flow Metab 1991, 11:472–478.

    Article  PubMed  CAS  Google Scholar 

  76. Nakata N, Kato H, Kogure K: Protective effects of basic fibroblast growth factor against hippocampal neuronal damage following cerebral ischemia in the gerbil. Brain Res 1993, 605:354–356.

    Article  PubMed  CAS  Google Scholar 

  77. Tanaka R, Miyasaka Y, Yada K, et al.: (1995) Basic fibroblast growth factor increases regional cerebral blood flow and reduces infarct size after experimental ischemia in a rat model. Stroke 1995, 26:2154–2158.

    Article  PubMed  CAS  Google Scholar 

  78. Wen TC, Matsuda S, Yoshimura H, et al.: Protective effect of fibroblast growth factor-heparin and neurotoxic effect of platelet factor 4 on ischemic neuronal loss and learning disability in gerbils. Neuroscience 1995, 65:513–521.

    Article  PubMed  CAS  Google Scholar 

  79. Bethel A, Kirsch JR, Koehler RC, et al.: Intravenous basic fibroblast growth factor decreases brain injury resulting from focal ischemia in cats. Stroke 1997, 28:609–615.

    Article  PubMed  CAS  Google Scholar 

  80. Gluckman P, Klempt N, Guan J, et al.: A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem Biophys Res Commun 1992, 182:593–599.

    Article  PubMed  CAS  Google Scholar 

  81. Guan J, Williams C, Gunning M, et al.: The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats. J Cereb Blood Flow Metab 1993, 13:609–616.

    Article  PubMed  CAS  Google Scholar 

  82. Zhu CZ, Auer RN: Intravenous administration of insulin and IGF-1 in transient forebrain ischemia. J Cereb Blood Flow Metab 1994, 14:237–242.

    Article  PubMed  CAS  Google Scholar 

  83. Guan J, Williams CE, Skinner SJM, et al.: The effects of insulin-like growth factor (IGF)-l, IGF-2 and des-IGF-1 on neuronal loss after hypoxic-ischemic brain injury in adult rats: evidence for a role of IGF binding proteins. Endocrinology 1996, 137:893–898.

    PubMed  CAS  Google Scholar 

  84. Shigeno T, Mima T, Rakakura K, et al.: Amelioration of delayed neuronal death in the hippocampus by nerve growth factor. J Neurosci 1991, 11:2914–2919.

    PubMed  CAS  Google Scholar 

  85. Tanaka R, Tsukahara T, Hashimoto N, et al.: Effect of nerve growth factor on delayed neuronal death after cerebral ischemia. Acta Neurochir 1994, 129:64–71.

    Article  PubMed  CAS  Google Scholar 

  86. Holtzman DM, Sheldon RA, Jaffe W, et al.: Nerve growth factor protects the neonatal rat brain against hypoxic-ischemic injury. Ann Neurol 1996, 39:114–122.

    Article  PubMed  CAS  Google Scholar 

  87. Chan KM, Lam DT, Pong K, et al.: Neurotrophin-4/5 treatment reduces infarct size in rats with middle cerebral artery occlusion. Neurochem Res 1996, 21:763–767.

    Article  PubMed  CAS  Google Scholar 

  88. Gross CE, Bednar MM, Howard DB, et al.: TGF-β1 reduces infarct size following experimental cerebral ischemia in a rabbit model. Stroke 1993, 24:558–562.

    Article  PubMed  CAS  Google Scholar 

  89. Prehn JHM, Backhauss C, Krieglstein J: Transforming growth factor-&#s03B2;l prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J Cereb Blood Flow Metab 1993, 13:521–525.

    Article  PubMed  CAS  Google Scholar 

  90. McNeill H, Williams C, Guan J, et al.: Neuronal rescue with transforming growth factor-beta 1 after hypoxic-ischaemic brain injury. Neuroreport 1994, 5:901–904.

    Article  PubMed  CAS  Google Scholar 

  91. Henrich-Noack P, Prehn JHM, Krieglstein J: TGF-β protects hippocampal neurons against degeneration caused by transient global ischemia. Stroke 1996, 27:1609–1615.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Current Medicine, Inc.

About this chapter

Cite this chapter

Ay, I., Ay, H., Koroshetz, W.J., Finklestein, S.P. (2001). Growth Factors and Cerebral Ischemia. In: Fisher, M., Bogousslavsky, J. (eds) Current Review of Cerebrovascular Disease. Current Medicine Group, London. https://doi.org/10.1007/978-1-4684-0001-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0001-4_3

  • Publisher Name: Current Medicine Group, London

  • Print ISBN: 978-1-4684-0003-8

  • Online ISBN: 978-1-4684-0001-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics