Skip to main content

The Gastrointestinal Tract in Food Toxicology

  • Chapter
Toxic Hazards in Food

Part of the book series: Croom Helm Applied Biology Series ((CHBMS))

Abstract

In the context of food toxicology the gastrointestinal tract is of major importance in that it is the primary site of exposure to potential toxicants and the concentrations involved are likely to be higher than those in other tissues. This can lead to localised lesions due to irritation or to more specific toxic effects. Furthermore, dietary components may undergo metabolism in the gut by endogenous mammalian enzymes or by the gut microflora and this may significantly influence the toxicological sequelae. Pre-existing enteropathies or enzyme deficiencies can alter the course of both these events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.V. Holdeman, W.E.C. Moore, Anaerobe Laboratory Manual, 3rd edn. ( VPI Anaerobe Laboratory, Blacksburg, Virginia, 1972 ).

    Google Scholar 

  2. B.S. Drasar, ‘Cultivation of Anaerobic Intestinal Bacteria’, J. Pathol Bacteriol, 94 (1967), pp. 417–427.

    Article  Google Scholar 

  3. W.E.C. Moore, E.P. Cato, L.V. Holdeman, ‘Some Current Concepts in Intestinal Bacteriology’, Am. J. clin. Nutr., 31 (1978), pp. 533–542.

    Google Scholar 

  4. D.C. Savage, ‘Interactions Between the Host and its Microbes’ in R.T.J. Clark, T. Bauchop (eds.), Microbial Ecology of the Gut ( Academic Press, London, 1977 ), pp. 277–310.

    Google Scholar 

  5. J.P. Brown, ‘Role of Gut Bacterial Flora in Nutrition and Health: a Review of Recent Advances in Bacteriological Techniques, Metabolism and Factors Affecting Flora Composition’, Crit. Rev. Fd Sci. Nutr., 8 (1977), pp. 229–336.

    Article  Google Scholar 

  6. B.S. Drasar, M.J., Hill, R.E.O., Williams, ‘The Significance of the Gut Flora in Safety Testing of Food Additives’ in F.J.C. Roe (ed.), Metabolic Aspects of Food Safety ( Blackwell Scientific Publications, Oxford, 1970 ), pp. 245–260.

    Google Scholar 

  7. R.A. Giannella, S.A. Broitman, N. Zamcheck, ‘Gastric Acid Barrier to Ingested Microorganisms in Man: Studies in vivo and in vitro’ Gut, 13 (1972), pp. 251–256.

    Article  Google Scholar 

  8. I.R. Rowland, ‘Metabolism of di–(2–ethylhexyl) Phthalate by the Contents of the Alimentary Tract of the Rat’, Fd Cosmet. Toxicol 12 (1974), pp. 293–302.

    Google Scholar 

  9. P.A. Sykes, K.H. Boulter, P.F. Schofleld, ‘Alterations in Small–Bowel Microflora in Acute Intestinal Obstruction’, J. Med. Microbiol., 9 (1976), pp. 13–22.

    Article  Google Scholar 

  10. S.L. Gorbach, R. Mitra, B. Jacobs, ‘Bacterial Contamination of the Upper Small Bowel in Tropical Sprue’, Lancet, i (1969), pp. 74–77.

    Google Scholar 

  11. P. Bhat, D. Shantakumari, D. Rajan, V.I. Mathan, C.R. Kapadia, C. Swarnabai, S.J. Baker, ‘Bacterial Flora of the Gastrointestinal Tract in Southern Indian Control Subjects and Patients with Tropical Sprue’, Gastroenterology, 62 (1972), pp. 11–12.

    Google Scholar 

  12. S.L. Gorbach, ‘Microflora of the Gastrointestinal Tract in Tropical Enteritis: A Current Appraisal’, Am. J. clin. Nutr., 25 (1972), pp. 1127–1130.

    Google Scholar 

  13. L.J. Mata, F. Jimenez, M. Cordon, R. Rosales, E. Prera, R.E. Schneider, F. Viteri, ‘Gastrointestinal Flora of Children with Protein–Calorie Malnutrition’, Am. J. clin. Nutr., 25 (1972), pp. 1118–1126.

    Google Scholar 

  14. M. Gracey, Suharjono, Sunoto, D.E. Stone, ‘Microbial Contamination of the Gut: Another Feature of Malnutrition’, Am. J. clin. Nutr., 26 (1973), pp. 1170–1174.

    Google Scholar 

  15. W.E.C. Moore, L.V. Holdeman, ‘Human Faecal Flora. The Normal Flora of 20 Japanese–Hawaiians’, Appl. Microbiol., 27 (1976), pp. 961–979.

    Google Scholar 

  16. L.V. Holdeman, I.J. Good, W.E.C. Moore, ‘Human Fecal Flora: Variation in Bacterial Composition Within Individuals and a Possible Effect of Emotional Stress’, Appl. Environ. Microbiol., 31 (1975),pp. 359–375.

    Google Scholar 

  17. A.J. Mastromarino, B.S. Reddy, E.L. Wynder, ‘Faecal Profiles of Anaerobic Microflora of Large Bowel Cancer Patients and Patients with Non– hereditary Large Bowel Polyps’, Cancer Res., 38 (1978), pp. 4458–4462.

    Google Scholar 

  18. J. Gossling, J.M. Slack, ‘Predominant Gram–Positive Bacteria in Human Faeces: Numbers, Variety and Persistence’, Infection and Immunity, 9 (1974), pp. 719–729.

    Google Scholar 

  19. B.G. Veilleux, I. Rowland, ‘Simulation of the Rat Intestinal Ecosystem using a Two–stage Continuous Culture System’, J. gen. Microbiol., 123, (1981), pp. 103–115.

    Google Scholar 

  20. C.P. Davis, D. Cleven, E. Balish, C.E. Yale, ‘Bacterial Association in the Gastrointestinal Tract of Beagle Dogs’, Appl. Environ. Microbiol., 34 (1977), pp. 194–206.

    Google Scholar 

  21. A.W. Brinkley, G.E. Mott, ‘Anaerobic Faecal Bacteria of the Baboon’, Appl. Environ. Microbiol., 36 (1978), pp. 530–532.

    Google Scholar 

  22. A. Lee, M. Phillips, ‘Isolation and Cultivation of Spirochetes and Other Spiral–shaped Bacteria Associated with the Cecal Mucosa of Rats and Mice’, J. Appl. Environ. Microbiol, 35 (1978), pp. 610–613.

    Google Scholar 

  23. D.C. Savage, R.V. Blumershine, ‘Surface — Surface Association in Microbial Communities Populating Epithelial Habitats in the Murine Gastro–intestinal Ecosystem, Scanning Electron Microscopy’, Infect. Immunol, 10 (1974), pp. 240–250.

    Google Scholar 

  24. D.C. Savage, J.S. McAllister, C.P. Davis, ‘Anaerobic Bacteria on the Mucosal Epithelium of the Murine Large Bowel’, Infect. Immunol., 4 (1971), pp. 492–502.

    Google Scholar 

  25. D.P. Nelson, L.J. Mata, ‘Bacterial Flora Associated with the Human Gastrointestinal Mucosa’, Gastroenterol, 58 (1970), pp. 56–61.

    Google Scholar 

  26. H. Haenel, ‘Human Normal and Abnormal Gastrointestinal Flora’, Am. J. clin. Nutr., 23 (1970), pp. 1433–1439.

    Google Scholar 

  27. C.L. Bullen, P.V. Tearle, A.T. Willis, ‘Bifidobacteria in the Intestinal Tract of Infants: An in vivo Study’, J. Med. Microbiol, 9 (1976), pp. 325–333.

    Article  Google Scholar 

  28. R.B. Ellis–Pegler, C. Crabtree and H.P. Lambert, ‘The Faecal Flora of Children in the United Kingdom’, J. Hyg., Camb., 75 (1975), pp. 135–142.

    Article  Google Scholar 

  29. B.S. Drasar, M. Shiner, ‘Studies on the Intestinal Flora. Part II — Bacterial Flora of the Small Intestine in Patients with Gastrointestinal Disorders’, Gut, 10 (1969), pp. 812–819.

    Article  Google Scholar 

  30. V.C. Aries, J.S. Crowther, B.S. Drasai, M.J. Hill, R.E.O. Williams, Bacteria and the Aetiology of Cancer of the Large Bowel’, Gut, 10 (1969), pp. 334–335.

    Article  Google Scholar 

  31. B.S. Drasar, J.S. Crowther, P. Goddard, Gabrielle Hawksworth, M.J. Hill, Susan Peach, R.E.O. Williams, A. Renwick, ‘The Relation Between Diet and the Gut Flora in Man’ Proc. Nutr. Soc., 32 (1973), pp. 49–52.

    Article  Google Scholar 

  32. J.S. Crowther, B.S. Drasar, M.J. Hill, R. MacLennan, D. Magnin, S. Peach, C.H. Teoh-Chan, ‘Faecal Steroids and Bacteria and Large Bowel Cancer in Hong Kong by Socio–Economic Groups’, Br. J. Cancer, 34 (1976), pp. 191–197.

    Article  Google Scholar 

  33. W.E.C. Moore, L.V. Holdeman, ‘Discussion of the Current Bacteriological Investigations of the Relationships Between Intestinal Flora, Diet and Colon Cancer’, Cancer Res., 35 (1975), pp. 3418–3420.

    Google Scholar 

  34. M. Winitz, R.F. Adams, D.A. Seedman, P.N. Davis, L.G. Jayko, J.A. Hamilton, ‘Studies in Metabolic Nutrition Employing Chemically Defined Diets’, Am. J. clin. Nutr., 23 (1970), pp. 546–559.

    Google Scholar 

  35. H.R. Atterbery, V.L. Sutter, S.M. Finegold, ‘Effect of a Partially Chemically Defined Diet on Normal Human Faecal Flora’, Am. J. clin. Nutr., 25 (1972), pp. 1391–1398.

    Google Scholar 

  36. R.S. Speck, D.H. Calloway, W.K. Hadley, ‘Human Faecal Flora Under Controlled Diet Intake’, Am. J. clin. Nutr., 23 (1970), pp. 1488–1494.

    Google Scholar 

  37. B.S. Drasar, M.J. Hill, Human Intestinal Flora ( Academic Press, London, 1974 ).

    Google Scholar 

  38. V.C. Aries, J.S. Crowther, B.S. Drasar, M.J. Hill, F.R. Ellis, ‘The Effect of a Strict Vegetarian Diet on the Faecal Flora and Faecal Steroid Concentration’, J. Pathol., 103 (1971), pp. 54–56.

    Article  Google Scholar 

  39. B.S. Drasar, D.J.A. Jenkins, J.H. Cummings, ‘The Influence of a Diet Rich in Wheat Fibre on the Human Faecal Flora’, J. Med. Microbiol., 9 (1976), pp. 423–431.

    Article  Google Scholar 

  40. B.S. Drasar, D. Irving, ‘Environmental Factors and Cancer of the Colon and Breast’, Br. J. Cancer, 27 (1973), pp. 167–172.

    Article  Google Scholar 

  41. B.S. Reddy, J.H. Weisburger, E.L. Wynder, ‘Effects of High Risk and Low Risk Diets for Colon Carcinogenesis on Faecal Microflora and Steroids in Man’, J. Nutr., 105 (1975), pp. 878–884.

    Google Scholar 

  42. B.S. Reddy, J.H. Weisburger, E.L. Wynder, ‘Faecal Bacterial β–glucuronidase: Control by Diet’, Science, 183 (1974), pp. 416–417.

    Article  Google Scholar 

  43. D.J. Hentges, B.R. Maier, G.C. Burton, M.A. Flynn, R.K. Tsutakawa, ‘Effects of a High Beef Diet on the Fecal Bacterial Flora of Humans’, Cancer Res., 37 (1977), pp. 568–571.

    Google Scholar 

  44. J.H. Cummings, H.S. Wiggins, D.J.A. Jenkins, H. Houston, T. Jivraj, B.S. Drasar, M.J. Hill, ‘Influence of Diets High and Low in Animal Fat on Bowel Habit, Gastrointestinal Transit Time, Fecal Microflora, Bile Acid and Fat Excretion’, J. clin. Invest., 61 (1978), pp. 953–963.

    Article  Google Scholar 

  45. K.T. Chung, G.E. Full, J. Silverman, ‘Dietary Effects on the Composition of Fecal Flora of Rats’, Appl. Environ. Microbiol. 33 (1977), pp. 654–659.

    Google Scholar 

  46. B. Goldin, S.L. Gorbach, ‘Alterations in Fecal Microflora Enzymes Related to Diet, Age, Lactobacillus Supplements and Dimethylhydrazine’, Cancer, 40 (1977), pp. 2421–2426.

    Article  Google Scholar 

  47. 47.I.R. Rowland, M.J. Davies, J.G. Evans, ‘Tissue Content of Mercury in Rats Given Methylmercuric Chloride Orally. Influence of Intestinal Flora’, Arch. Environ. Hlth, 35 (1980), pp. 155–160.

    Google Scholar 

  48. B.S. Wostman, E. Bruckner–Kardoss, ‘Oxidation–Reduction Potentials in Cecal Contents of Germfree and Conventional Rats’, Proc. Soc. Exp. Biol. Med., 121 (1966), pp. 1111–1114.

    Google Scholar 

  49. D.J. Ford, ‘The Effect of the Microflora on Gastrointestinal pH in the Chick’, British Poultry Sci., (1974), pp. 131–140.

    Google Scholar 

  50. M.E. Coates, R. Fuller, ‘The Gnotobiotic Animal in the Study of Gut Microbiology’ in R.T.J. Clark, T. Bauchop (eds.), Microbial Ecology of the Gut ( Academic Press, London, 1977 ), pp. 311–346.

    Google Scholar 

  51. T.L. Luckey, Germfree Life and Gnotobiology ( Academic Press, New York, 1963 ).

    Google Scholar 

  52. M. Lev, A.F. Milford, ‘Apparatus for Metabolic Studies with Anaerobes’, Appl. Microbiol, 21 (1971), pp. 555–556.

    Google Scholar 

  53. R.J. Allan, A.A. Tesoriero, J.J. Roxon, ‘An Incubation Flask to Study Metabolism of Foreign Compounds by Intestinal Microflora’, Xenobiotica, 5 (1975), pp. 407–411.

    Article  Google Scholar 

  54. P.N. Hobson, ‘Continuous Culture of Rumen Bacteria: Apparatus’, J. Gen. Microbiol, 38 (1965), pp. 161–166.

    Article  Google Scholar 

  55. P. Goddard, F. Fernandez, B. West, M.J. Hill and P. Barnes, ‘The Nuclear Dehydrogenation of Steroids by Intestinal Bacteria’, J. Med. Microbiol, 8 (1975), pp. 429–435.

    Article  Google Scholar 

  56. E.C. McCoy, W.T. Speck and H.S. Rosenkranz, ‘Activation of a Procarcinogen to a Mutagen by Cell Free Extracts of Anaerobic Bacteria’, Mutat. Res., 46 (1977), pp. 261–264.

    Article  Google Scholar 

  57. J.S. Brown and P.S. Dietrich, ‘Mutagenicity of Anthraquinone and Benzanthrone Derivatives in the Salmonella Microsome Test: Activation of Anthroquinone Glycosides by Enzymic Extracts of Rat Cecal Bacteria’, Mutat. Res., 66 (1979), pp. 9–24.

    Article  Google Scholar 

  58. M.A. Harris, C.A. Reddy and G.R. Carter, ‘Anaerobic Bacteria from the Large Intestine of Mice’, Appl. Environ. Microbiol, 31 (1976), pp. 907–912.

    Google Scholar 

  59. J.H. Gordon and R. Dubos, ‘The Anaerobic Bacterial Flora of the Mouse Cecum’, J. Exp. Med., 132 (1970), pp. 251–260.

    Article  Google Scholar 

  60. H. Williams Smith, ‘The Development of the Bacterial Flora of the Faeces of Animals and Man: The Changes that Occur during Ageing’, J. Appl. Bacteriol, 24 (1961), pp. 235–241.

    Article  Google Scholar 

  61. W.L. Beeken and R.E. Kanich, ‘Microbial Flora of the Upper Small Bowel in Crohn’s Disease’, Gastroenterology, 65 (1973), pp. 390–397.

    Google Scholar 

  62. J.D.A. Gray and M. Shiner, ‘Influence of Gastric pH on Gastric and Jejunal Flora’, Gut, 8 (1967), pp. 574–581.

    Article  Google Scholar 

  63. B.S. Drasar, M. Shiner and G.M. Mcleod, ‘Studies on the Intestinal Flora of the Gastrointestinal Tract in Healthy and Achlorhydria Persons’, Gastroenterology, 56 (1969), pp. 71–79.

    Google Scholar 

  64. A.M. Tomkins, B.S. Drasar and W.P.T. James, ‘Bacterial Colonisation of Jejunal Mucosa in Acute Tropical Sprue’, Lancet, i (1975), p. 59.

    Google Scholar 

  65. J.A.A. Van Der Wiel Korstanje and K.C. Winkler, ‘The Faecal Flora in Ulcerative Colitis’, J. Med. Microbiol, 8 (1975), pp. 491–501.

    Article  Google Scholar 

  66. S.L. Gorbach, J.G. Banwell, B.D. Chatteijee, B. Jacobs and R.B. Sack, ‘Acute Undifferentiated Human Diarrhoea in the Tropics. I. Alterations in In–testinal Microflora’, J. clin. Invest., 50 (1971),pp. 881–889.

    Article  Google Scholar 

  67. R. Cohen, M.H. Kaiser, I. Arteaga, E. Yann, D. Frazier, C.A. Leite, D.G. Ahearn and F. Roth, ‘Microbial Intestinal Flora in Acute Diarrhoeal Disease’, J. Am. Med. Assoc., 201 (1967), pp. 835–840.

    Article  Google Scholar 

  68. R.R. Scheline, ‘Toxicological Implications of Drug Metabolism by Intes–tinal Bacteria’, Proc. Eur. Soc. Study of Drug Toxicity (Excerpta Medica, Amster–dam, 1972 ), vol. XIII, pp. 35–43.

    Google Scholar 

  69. R. Scheline, ‘Metabolism of Foreign Compounds by Gastrointestinal Microorganisms’, Pharmacol. Rev., 25 (1973), pp. 451–523.

    Google Scholar 

  70. R.T. Williams, in Discussion of ‘The Significance of the Gut Flora in Safety Testing of Food Additives’ by Drasar, Hill and Williams, in F.J.C. Roe (ed.), Metabolic Aspects of Food Safety ( Blackwell, London, 1970 ), pp. 255–260.

    Google Scholar 

  71. A. Taurog, F.N. Briggs and I.L. Chaikoff, ‘I131–labelled I–thyroxine; Nature of Excretion Products in Bile’, J. Biol. Chem., 194 (1952), pp. 655–668.

    Google Scholar 

  72. R.R. Scheline, ‘Metabolism of Phenolic Acids by the Rat Intestinal Microflora’, Acta Pharmacol Toxicol, 26 (1968), pp. 189–205.

    Article  Google Scholar 

  73. D.V. Parke, Kh.M.Q. Rahman and R. Walker, ‘Absorption, Distribution and Excretion of Linalool in the Rat’, Biochem. Soc. Trans., 2 (1974), pp. 612–615.

    Google Scholar 

  74. G. Levy, L. Weintraub, T. Matsuzawa and S. Oles, ‘Absorption, Metabolism and Excretion of Salicylic Phenolic Glucuronide in Rats’, J. Pharmacol Sci., 5 (1966), pp. 1319–1320.

    Google Scholar 

  75. L.A. Woods, ‘Distribution and Fate of Morphine in Non–Tolerant and Tolerant Dogs and Rats’, J. Pharmacol Exp. Ther., 112 (1954), pp. 158–175.

    Google Scholar 

  76. D.J. Hanahan, E.G. Daskalakis, T. Edwards and H.J. Bauden, ‘Reduction of Water–soluble Azo Dyes by Intestinal Bacteria. Metabolic Patterns of 14C– diethylstilboestrol’ Endocrinology, 53 (1953), pp. 163–170.

    Article  Google Scholar 

  77. A.J. Glazko, W.A. Dill and L.M. Wolf, ‘Observations on the Metabolic Disposition of Chloramphenicol (Chloromycetin) in the Rat’, J. Pharmacol Exp. Ther., 104 (1952), pp. 452–458.

    Google Scholar 

  78. C.A. Marsh, F. Alexander and G.A. Lewy, ‘Glucuronide Decomposition in the Digestive Tract’, Nature (Lond.), 170 (1952), pp. 163–164.

    Article  Google Scholar 

  79. J.H. Weisburger, P.H. Grantham, R.E. Horton and E.K. Weisburger, ‘Metabolism of the Carcinogen N–hydroxy–N–2–fluorenylacetamide in Germ–free Rats’, Biochem. Pharmacol, 19 (1970), pp. 151–162.

    Article  Google Scholar 

  80. J.R. Williams, P.H. Grantham, H.H. Marsh, J.H. Weisburger and E.K. Weisburger, ‘Participation of Liver Fractions and of Intestinal Bacteria in the Metabolism of N–hydroxy–N–2–fluorenylacetamide in the Rat’, Biochem. Pharmacol, 19 (1970), pp. 173–188.

    Article  Google Scholar 

  81. L. Weinstein, ‘The Sulphonamides’ in L.S. Goodman and A. Gilman (eds.), The Pharmacological Basis of Therapeutics ( Macmillan, London, 1970 ), pp. 1177–1203.

    Google Scholar 

  82. D.S. Zaharko, H. Bruckner and V.T. Oliverio, ‘Antibiotics Alter Methotrexate Metabolism and Excretion’, Science, 166 (1969), pp. 887–888.

    Article  Google Scholar 

  83. D.S. Zaharko and V.T. Oliverio, ‘Reinvestigation of Methotrexate Metabolism in Rodents’, Biochem. Pharmacol, 19 (1970), pp. 2923–2925.

    Article  Google Scholar 

  84. D.M. Valerino, D.G. Johns, D.S. Zaharko and V.T. Oliverio, ‘Studies on the Metabolism of Methotrexate by Intestinal Flora I. Identification and Study of Biological Properties of the Metabolite 4–amino–4–deoxy–N10 –Methylpteroic Acid’, Biochem. Pharmacol, 21 (1972), pp. 821–831.

    Article  Google Scholar 

  85. R.E. Ranney and S.J. Eich, ‘The Metabolism of Sodium Amylopectin Sulfate in the Rat’, Toxicol Appl. Pharmacol., 15 (1969), pp. 593–603.

    Article  Google Scholar 

  86. D.J. Hearse, G.M. Powell, A.H. Olaveson and K.S. Dodgson, ‘The Influence of Some Physicochemical Factors on the Biliary Excretion of a Series of Structurally Related Aryl Sulphate Esters’, Biochem. Pharmacol, 18 (1969), pp. 181–195.

    Article  Google Scholar 

  87. G. Pala, G. Coppi and E. Crescenzi, ‘On the Laxative Properties of Sulfuric Esters of Phenols, with Particular Reference to 4,4′–(2–picolylidene)–bis–phenyl– sulfuric acid Disodium Salt’, Arch. Int. Pharmacodyn. Ther., 164 (1966), pp. 356–369.

    Google Scholar 

  88. F.J. DiCarlo, C.B. Coutinho and M.C. Crew, ‘Sites of Absorption of Pentaerythritol Tetranitrate’, Arch. Int. Pharmacodyn. Ther., 167 (1967), pp. 163–170.

    Google Scholar 

  89. G.W. Lanigan and L.W. Smith, ‘Metabolism of Pyrrolizidine Alkaloids in the Ovine Rumen. I. Formation of 7ohydroxy–10f–methyl–80pyrrolizidine from Heliotrine and Lasiocarpine’, Aust. J. Agr. Res., 21 (1970), pp. 493–500.

    Article  Google Scholar 

  90. P. Iveson, W.E. Lindup, D.V. Parke and R.T. Williams, ‘The Metabolism of Carbenoxolone in the Rat’, Xenobiotica, 1 (1971), pp. 79–95.

    Article  Google Scholar 

  91. D.V. Parke, T.C. Hunt and P. Iveson, ‘The Fate of [14C] Carbenoxolone in Patients with Gastric Ulcer’, Gin. Sci., 43 (1972), pp. 393–400.

    Google Scholar 

  92. H.G. Bray, Z. Hybs, S.P. James and W.V. Thorpe, ‘The Metabolism of 2,3,5,6– and 2,3,4,5– Tetrachloronitro–benzenes in the Rabbit and the Reduction of Aromatic Nitro compounds in the Intestine’, Biochem. J., 53 (1953), pp. 266–273.

    Google Scholar 

  93. E.J. Kuchar, F.O. Geenty, W.P. Griffith and R.J. Thomas, ‘Analytical Studies of Metabolism of Terraclor in Beagle Dogs, Rats and Plants’, J. Agr. Food Chem., 17 (1969), pp. 1237–1240.

    Article  Google Scholar 

  94. J.W. Cook, In vitro Destruction of Some Organo–phosphate Pesticides by Bovine Rumen Fluid’, J. Agr. Fd Chem., 5 (1957), pp. 859–863.

    Article  Google Scholar 

  95. J. Tréfouél, J. Tréfouél, F. Nitti and D. Bovet, ‘Activité du p–amino– phénylsulfamide sur les infections streptococcignes. Experimentales de la souris et du lapin’, C. amp; Séanc. Soc. Biol., 120 (1935), p. 756.

    Google Scholar 

  96. W.W. Spink, F.W. Hurd and J. Jermsta,’In vitro Conversion of Prontosil– soluble to Sulphanilamide by Various Types of Microorganism’, Proc. Soc. exp. Biol Med., 43 (1940), p. 172.

    Google Scholar 

  97. R. Walker, ‘The Metabolism of Azo Compounds: A Review of the Literature’, Fd Cosmet. Toxicol., 8 (1970), pp. 659–676.

    Article  Google Scholar 

  98. R. Gingell, J.W. Bridges and R.T. Williams, ‘The Role of the Gut Flora in the Metabolism of Prontosil and Neoprontosil in the Rat’, Xenobiotica, 1 (1971), pp. 143–156.

    Article  Google Scholar 

  99. T. Okabayashi and A. Yashimoto, ‘Reduction of 4–nitroquinoline 1–oxide by Micro–organisms’, Chem. Pharm. Bull (Japan), 10 (1962), pp. 1221–1226.

    Article  Google Scholar 

  100. A.T. Dick, A.T. Dann, L.B. Bull and C.C.J. Culvenor, ‘Vitamin B12 and the Detoxification of Hepatotoxic Pyrrolidine Alkaloids in Rumen Liquor’, Nature (Lond.), 197 (1963), pp. 207–208.

    Article  Google Scholar 

  101. A.H. Beckett, J.W. Gorrod and P. Jenner, ‘Absorption of (–)–nicotine–l– N–oxide in Man and its Reduction in the Gastrointestinal Tract’, J. Pharm. Pharmacol, 22 (1970), pp. 722–723.

    Article  Google Scholar 

  102. P.N. Grantham, R.E. Horton, E.K. Weisburger and J.H. Weisburger, ‘Metabolism of the Carcinogen N–2–fluorenyl–acetamide in Germ–free and Conventional Rats’, Biochem. Pharmacol, 19 (1970), pp. 163–171.

    Article  Google Scholar 

  103. R.R. Scheline, ‘The Metabolism of Some Aromatic Aldehydes and Alcohols by the Rat Intestinal Microflora’, Xenobiotica, 2 (1972), pp. 227–236.

    Article  Google Scholar 

  104. L.A. Griffiths and G.E. Smith, ‘Metabolism of Myricetin and Related Compounds in the Rat’. Metabolite Formation in vivo and by the Intestinal Microflora in vitro’ Biochem. J., 130 (1972), pp. 141–151.

    Google Scholar 

  105. T. Meyer and R.R. Scheline, ‘3,4,5–trimethoxy–cinnamic Acid and Related Compounds. I. Metabolism by the Rat Intestinal Microflora’, Xeno–biotica, 2 (1972), pp. 383–390.

    Article  Google Scholar 

  106. T. Meyer and R.R. Scheline, ‘3,4,5–trimethoxy–cinnamic Acid and Related Compounds. II. Metabolism in the Rat’, Xenobiotica, 2 (1972), pp. 391–398.

    Article  Google Scholar 

  107. T.W. Scott, P.F.V. Ward and R.M.C. Dawson, ‘Formation of Aromatic Fatty Acids from Amino Acids by Rumen Microorganisms’, Biochem. J., 87 (1963), pp. 3–4.

    Google Scholar 

  108. T.W. Scott, P.F.V. Ward and R.M.C. Dawson, ‘The Formation and Metabolism of Phenyl–substituted Fatty Acids in the Ruminant’, Biochem. J., 90 (1964), pp. 12–24.

    Google Scholar 

  109. M. Kaihara and J.M. Price, ‘The Metabolism of Quinaldic Acid, Kynurenic Acid and Xanthurenic Acid in the Rabbit’, J. Biol. Chem., 237 (1962), pp. 1727–1729.

    Google Scholar 

  110. M. Kaihaia and J.M. Price, ‘The Effect of Feeding Neomycin on the Dehydroxylation of Xanthurenic Acid to 8–hydroxy–quinaldic Acid by the Rabbit’, Biol Chem., 238 (1963), pp. 4082–4084.

    Google Scholar 

  111. G.M. Lower and G.T. Bryan, ‘The Metabolism of the 8–methyl ether of Xanthurenic Acid in the Mouse’, Cancer Res., 29 (1969), pp. 1013–1018.

    Google Scholar 

  112. G.M. Lower and G.T. Bryan, ‘The Metabolism of the 8–methyl ether of Xanthurenic Acid in the Rabbit’, J. Biol Chem., 244 (1969), pp. 2567–2571.

    Google Scholar 

  113. L.P. Strand and R.R. Scheline, ‘The Metabolism of Vanillin and Iso Vanillin in the Rat’ Xenobiotica, 5 (1975), pp. 49–63.

    Article  Google Scholar 

  114. J.P. Moody and R.T. Williams, ‘The Fate of 4–nitro–phenylarsonic Acids in Hens’, Fd Cosmet. Toxicol, 2 (1964), pp. 695–706.

    Article  Google Scholar 

  115. J.E. Peterson and W.H. Robinson, ‘Metabolic Products of p,p’–DDT in the Rat’, Toxicol Appl Pharmacol, 6 (1964), pp. 321–327.

    Article  Google Scholar 

  116. J.L. Mendel and M.S. Walton, ‘Conversion of p,p’–DDT to p,p+–DDD by Intestinal Flora of the Rat’, Science, 151 (1966), pp. 1527–1528.

    Article  Google Scholar 

  117. J.H.V. Stenersen, ‘DDT–metabolism in Resistant and Susceptible Stable– flies and in Bacteria’, Nature (Lond.), 208 (1965), p. 200.

    Google Scholar 

  118. W.R. Jondorf, D.V. Parke and R.T. Williams, ‘Studies in Detoxication. 76. The Metabolism of Halogenobenzenes. 1,2,3,4–, 1,2,3,5–and 1,2,4,5–tetrachlorobenzenes’, Biochem. J., 69 (1958), pp. 181–189.

    Google Scholar 

  119. D.V. Parke and R.T. Williams, ‘Studies in Detoxication. 81. The Metabolism of Halogenobenzenes: (a) Penta– and Hexachlorobenzenes (b) Further Observations on 1,3,5–trichlorobenzene’, Biochem J., 74 (1960), pp. 5–9.

    Google Scholar 

  120. T.L. Perry, M. Hestrin, L. MacDougall and S. Hansen, ‘Urinary Amines of Intestinal Bacterial Origin’, Clin. Chim. Acta, 14 (1966), pp. 116–123.

    Article  Google Scholar 

  121. O.M. Bakke, ‘Urinary Simple Phenols in Rats Fed Diets Containing Different Amounts of Casein and 10% Tyrosine’, J. Nutr., 98 (1969), pp. 217–221.

    Google Scholar 

  122. O.M. Bakke, ‘Minor Urinary Metabolites of L–dopa in the Rat’, Acta Pharmacol Toxicol, 29 (1971), pp. 106–107.

    Article  Google Scholar 

  123. J. Bergmark, A. Carlsson, A–K. Granerus, R. Jagenburg, T. Magnusson and A. Svanborg, ‘Decarboxylation of Orally Administered L–dopa in the Human Digestive Tract’, Naunyn–Schmiedebergs Arch. Pharmakol. Exp. Pathol, 272 (1972), pp. 437–440.

    Article  Google Scholar 

  124. G. Curzon and R.T.C. Pratt, ‘Origin of Urinary Resorcinol Sulphate’, Nature (Lond.), 204 (1964), pp. 383–384.

    Article  Google Scholar 

  125. R.R. Scheline, ‘The Metabolism of Drugs and other Organic Compounds by the Intestinal Microflora’, Acta Pharmacol Toxicol, 26 (1968), pp. 332–342.

    Article  Google Scholar 

  126. R. Minder, F. Schnetzer and M.H. Bickel, ‘Hepatic and Extrahepatic Metabolism of the Psychotropic Drugs, Chlorpromazine, Imipramine and Imipramine–N–oxide’, Naunyn–Schmiedebergs Arch. Pharmakol Exp. Pathol, 268 (1971), pp. 334–347.

    Article  Google Scholar 

  127. J. Closon, G. Salvatore, R. Michel and J. Roche, ‘Dégradation de l’ester sulfurique de la 3,5,3′ –triiodo–Z,–thyronine par les bactéries intestinales du rat’, C. r. Séances Soc. Biol., 153 (1959), pp. 1120–1125.

    Google Scholar 

  128. B.A. Koechlin, F. Rubio, S. Palmer, T. Gabriel and R. Duschinsky, ‘The Metabolism of 5–fluoro–cytosine–214C and of Cytosine 14C in the Rat and the Disposition of 5–fluoro–cytosine–214C in Man’, Biochem. Pharmacol, 15 (1966), pp. 435–466.

    Article  Google Scholar 

  129. J.J. Roxon, A.J. Ryan and S.E. Wright, ‘Enzymatic Reduction of Tartrazine by Proteus vulgaris from Rats’, Fd Cosmet. Toxicol, 5 (1967), pp. 645–656.

    Article  Google Scholar 

  130. R.R. Scheline, ‘Studies on the Role of the Intestinal Microflora in the Metabolism of Coumarin in Rats’, Acta Pharmacol Toxicol, 26 (1968), pp. 325–331.

    Article  Google Scholar 

  131. S.R. Indahl and R.R. Scheline, ‘The Metabolism of Umbelliferone and Herniarin in Rats and by Rat Intestinal Microflora’ Xenobiotica, 1 (1971), pp. 13–24.

    Article  Google Scholar 

  132. Y. Nakagawa, M.R. Shetlar and S.H. Wender, ‘Urinary Products from Quercetin in Neomycin–treated Rats’, Biochim. Biophys. Acta, 97 (1965), pp. 233–241.

    Article  Google Scholar 

  133. R.S. Rosenfeld, I. Paul and T. Yamuchi, ‘Sterol Esterification in Feces’, Arch. Biochem. Biophys,122 (1967), pp. 653–657.

    Google Scholar 

  134. O. Sjaastad, Fate of Histamine and N–acetylhistamine Administered into the Human Gut’ Acta Pharmacol Toxicol, 24 (1966), pp. 189–202.

    Google Scholar 

  135. R.R. Scheline and B. Longberg, ‘The Absorption, Metabolism and Excretion of the Sulphonated Azo Dye, Acid Yellow, by Rats’, Acta Pharmacol Toxicol, 23 (1965), pp. 1–14.

    Article  Google Scholar 

  136. I. Rowland, M. Davies and P. Grasso, ‘Biosynthesis of Methylmercury Compounds by the Intestinal Flora of the Rat’, Arch. Environ. Hlth, 32 (1977), pp. 24–28.

    Google Scholar 

  137. P.J. Thomas,’In vitro Conversion of Oleic Acid to Hydroxystearic Acid by Intestinal Bacteria’, Gin. Res., 18 (1970), p. 609.

    Google Scholar 

  138. P.J. Thomas, ‘Identification of some Enteric Bacteria which Convert Oleic Acid to Hydroxystearic Acid in vitro’ Gastroenterology, 62 (1978), pp. 430–435.

    Google Scholar 

  139. P. Klubes and W.R. Jondorf, ‘Dimethylnitrosamine Formation From Sodium Nitrite and Dimethylamine by Bacterial Flora of Rat Intestine’, Res. Commun. Chem. Pathol Pharmacol, 2 (1971), pp. 24–34.

    Google Scholar 

  140. G. Hawksworth and M.J. Hill, ‘Bacteria and the N–Nitrosation of Secondary Amines’, Br. J. Cancer, 25 (1971), pp. 520–526.

    Article  Google Scholar 

  141. P. Kemp and R.M.C. Dawson, ‘Isomerisation of Linolenic Acid by Rumen Micro–organisms’, Biochem. J., 109 (1968), pp. 477–478.

    Google Scholar 

  142. R.H. Adamson, J.W. Bridges, M.E. Evans and R.T. Williams, ‘Species Differences in the Aromatisation of Quinic Acid in vivo and the Role of Gut Bacteria’, Biochem. J., 116 (1970), pp. 437–443.

    Google Scholar 

  143. P. Goddard and M.J. Hill, ‘The Dehydrogenation of the Steroid Nucleus by Human–gut Bacteria’, Biochem. Soc. Trans., 1 (1973), pp. 1113–1115.

    Google Scholar 

  144. R.T. Williams, P. Millburn and R.L. Smith, ‘The Influence of Entero– hepatic Circulation on the Toxicity of Drugs’, Ann. N. Y. Acad. Sci., 123 (1965), p. 110.

    Article  Google Scholar 

  145. A.G. Clark, L.J. Fischer, P. Millburn, R.L. Smith and R.T. Williams, ‘The Role of Gut Flora in the Enterohepatic Circulation of Stilboestrol in the Rat’ Biochem. J., 112 (1969), p. 17.

    Google Scholar 

  146. L.G. Ladomery, A.J. Ryan and S.E. Wright, ‘Excretion of 14C Butylated Hydroxytoluene (BHT) in the Rat’, Fd Cosmet. Toxicol, 3 (1967), p. 547.

    Google Scholar 

  147. M. Spalz, D.W.E. Smith, E.G. McDaniel and G.L. Laqueur, ‘Role of Intestinal Microorganisms in Determining Cycasin Toxicity’, Proc. Soc. exp. Biol Med. (NY), 124 (1967), p. 691.

    Google Scholar 

  148. A.G. Renwick and R.T. Williams, ‘Gut Bacteria and the Metabolism of Cyclamate in the Rat’, Biochem. J., 114 (1969), p. 78.

    Google Scholar 

  149. M.J. Hill, B.S. Drasar, V. Aries, J.S. Crowther, G. Hawksworth and R.E.O. Williams, ‘Bacteria and Aetiology of Cancer of the Large Bowel’, Lancet, pp. 95–100.

    Google Scholar 

  150. K. Hartiala, ‘Metabolism of Hormones, Drugs and Other Substances by the Gut’, Physiological Rev., 53 (1973), pp. 496–534.

    Google Scholar 

  151. R.S. Chhabra and J.R. Fouts, ‘Biochemical Properties of Some Micro–somal Xenobiotic–metabolising Enzymes in Rabbit Small Intestine’, Drug Meta–bolism amp; Disposition, 4 (1976), pp. 208–214.

    Google Scholar 

  152. R.S. Chhabra and J.M. Tredger, ‘Interactions of Drugs and Intestinal Mucosal Endoplasmic Reticulum’, Nutrition amp; Drug Interrelations, (1978), pp. 253–s277.

    Google Scholar 

  153. S.J. Stohs, R.C. Grafstrom, D.M. Burke and S. Orrenius, ‘Xenobiotic Metabolism and Enzyme Induction in Isolated Rat Intestinal Microsomes’, Drug Metabolism amp; Disposition, 4 (1976), pp. 517–521.

    Google Scholar 

  154. M.H. Floch, S. Van Noorden and H.M. Spiro, ‘Histochemical Localisation of Gastric and Small Bowel Mucosal Enzymes of Man, Monkey and Chimpanzee’, Gastroenterology, 52 (1967), pp. 230–238.

    Google Scholar 

  155. B. Friedman, D.S. Strachan and M.M. Dewey, ‘Histochemical and Bio–chemical Analysis of the Non–specific Esterases of the Small Intestine of the Rat’ J. Histochem. Cytochem., 14 (1966), pp. 560–566.

    Article  Google Scholar 

  156. D.W. Piper and B.H. Fenton, ‘Beta–glucuronidase of Gastric, Mucosal and Carcinomatous Origin’, Gin. Chem. Acta, 24 (1969), pp. 215–219.

    Article  Google Scholar 

  157. R.P. Spencer, K.R. Brody and B.M. Lutters, ‘Some Effects of Ethanol on the Gastrointestinal Tract’, Am. J. Dig. Dis., 9 (1964), pp. 599–604.

    Article  Google Scholar 

  158. W.-F. Fang and H.W. Strobel, ‘The Drug and Carcinogen Metabolism System of Rat Colon Microsomes’ Arch. Biochem. Biophys., 186 (1978), pp. 128–138.

    Article  Google Scholar 

  159. J. Kubistova, ‘Parathion Metabolism in Female Rats’, Arch. Int. Pharmacodyn. Ther., 118 (1959), pp. 308–316.

    Google Scholar 

  160. P.D. Lotlikar, E.C. Miller, J.A. Miller and A. Margreth, ‘Enzymic Reduction of the TV–hydroxy Derivatives of 2–acetylaminofluorene and Related Carcinogens by Tissue Preparations’, Cancer Res., 25 (1965), pp. 1743–1752.

    Google Scholar 

  161. A. Aitio, ‘UDP–glucuronyl Transferase Activity in Various Rat Tissues’, Int. J. Biochem., 5 (1974), pp. 325–330.

    Article  Google Scholar 

  162. M.O. Pulkkinen, ‘Sulphate Conjugation during Development in Human, Rat and Guinea Pig’, Acta Physiol Scand., 66 (1966), pp. 115–119.

    Article  Google Scholar 

  163. L.M. Pinkus, J.N. Ketley and W.B. Jakoby, ‘The Glutathione S– transferases as a possible Detoxification System of Rat Intestinal Epithelium’, Biochem. Pharmacol, 26 (1977), pp. 2359–2363.

    Article  Google Scholar 

  164. C. Davidson, E.F. Zimmerman and P.K. Smith, ‘On the Metabolism and Toxicity of Methyl Salicylate’ J. Pharm. Expt. Ther., 132 (1961), pp. 207–211.

    Google Scholar 

  165. J.R. Poley, ‘Fat Digestion and Absorption in Lipase and Bile Acid Deficiency’ in K. Rommel and R. Bohmer (eds.), Lipid Absorption: Biochemical and Clinical Aspects (Univ. Park Press, Baltimore, 1976 ), pp. 151–202.

    Google Scholar 

  166. V.L.W. Go, J.R. Poley, A.F. Hofmann and W.H.J. Summerskill, ‘Disturbances in Fat Digestion Induced by Acidic Jejunal pH due to Gastric Hypersecretion in Man’, Gastroenterology, 58 (1970), pp. 638–646.

    Google Scholar 

  167. B. Hadorn and J.C. Haworth, ‘Intestinal Enterokinase Deficiency Clinical and Biochemical Findings in Six Patients’ in B. Borgstrom, A. Dahlqvist and L. Hambracus (eds.), Intestinal Enzyme Deficiencies and their Nutritional Implications (Swedish Nutrition Foundation, 1973 ), pp. 107–113.

    Google Scholar 

  168. J.C. Haworth, B. Hadorn, B. Gourley, A, Prasad and V. Troesch, ‘Intestinal Enterokinase Deficiency, Occurrence in Two Siblings and Age Dependency of Clinical Expression’, Arch. Dis. Child., 50 (1973), pp. 277–282.

    Google Scholar 

  169. G.C. Cook, ‘Incidence and Clinical Features of Specific Hypolactasia in Adult Man’ in B. Borgstrom, A. Dahlqvist and L. Hambracus (eds.), Intestinal Enzyme Deficiencies and their Nutritional Implications (Swedish Nutrition Foundation, 1973 ), pp. 52–73.

    Google Scholar 

  170. A. Dahlqvist and N.-G. Asp, ‘Specific Disaccharidase Deficiency in Adults’, Trans. Biochem. Soc., 3 (1975), pp. 227–232.

    Google Scholar 

  171. G.C. Cook, ‘Defects of Sugar Absorption. Some Observations on Racial Lactase Deficiency’, Proc. R. Soc. Med., 61 (1968), pp. 1102–4.

    Google Scholar 

  172. N.S. Rosensweig, ‘The Influence of Dietary Carbohydrates on Intestinal Disaccharidase Activity in Man’ in B. Borgstrtfm, A. Dahlqvist and L. Hambracus (eds.), Intestinal Enzymic Deficiencies and their Nutritional Implications (Swedish Nutrition Foundation, 1973 ), pp. 21–31.

    Google Scholar 

  173. E. Gudmund–Høyer, ‘Clinical Significance and Some Nutritional Aspects of Disaccharide Malabsorption’ in B. Borgstrom, A. Dahlqvist and L. Hambracus (eds.), Intestinal Enzyme Deficiencies and their Nutritional Implications (Swedish Nutrition Foundation, 1973 ), pp. 37–44.

    Google Scholar 

  174. P. Coello–Ramirez and F. Lifshitz, ‘Enteric Microflora and Carbohydrate Tolerance in Infants with Diarrhoea’, Pediatrics, 49 (1972), pp. 233–242.

    Google Scholar 

  175. A. Jones, P.R. Flanagan and G.C. Forstner, ‘Pathogenesis of Mucosal Injury in the Blind Loop Syndrome. Brush Border Enzyme Activity and Glycoprotein Degradation’ J. Gin. Invest 60 (1977), pp. 1321–1330.

    Google Scholar 

  176. W. Perlow, E. Baraona and C.S. Lieber, ‘Symptomatic Intestinal Disaccharidase Deficiency in Alcoholics’, Gastroenterology, 72 (1977), pp. 680–684.

    Google Scholar 

  177. G.C. Graham and D.M. Paige, ‘Nutritional Implications of Low Intestinal Lactase Activity in Children’ in B. Borgstrom, A. Dahlqvist and L. Hambracus (eds.), Intestinal Enzyme Deficiencies and their Nutritional Implications (Swedish Nutrition Foundation, 1973 ), pp. 45–51.

    Google Scholar 

  178. C.E. Stirling, A.J. Schneider, M.–D. Wong and W.B. Kinter, ‘Quantitative Radioautography of Sugar Transport in Intestinal Biopsies from Normal Humans and a Patient with Glucose–Galactose Malabsorption’, J. Clin. Invest., 51 (1972), pp. 438–451.

    Article  Google Scholar 

  179. E.E. Wollaeyer, W.O. Lundberg and J.R. Chipault, ‘Fecal Plasma Lipids’, Gastroenterology, 24 (1952), pp. 422–436.

    Google Scholar 

  180. C.R. Kepler and S.B. Tove, ‘Biohydrogenation of Unsaturated Fatty Acids III. Purification and Properties of a Linoleate. 12–cis,A 11–trans–isomerase from Butyrivibro fibrisolvens’ J. Biol. Chem., 242 (1967), pp. 5686–5692.

    Google Scholar 

  181. S.C. Mills, T.W. Scott, G.R. Russell and R.M. Smith, ‘Hydrogenation of C18 Unsaturated Fatty Acids by Pure Cultures of a Rumen Micrococcus’, Aust. J. Biol. Set, 23 (1970), pp. 1109–1113.

    Google Scholar 

  182. P. Kemp and R.W. White, ‘The Biohydrogenation of Linolenic and Linoleic Acids by Bacteria Isolated from an Ovine Rumen’, Biochem. J., 106 (1968), p. 55 P.

    Google Scholar 

  183. W.C. Watson, ‘Intestinal Hydrogenation of Dietary Fatty Acids’, Clin. Chim. Acta, 12 (1965), pp. 340–342.

    Article  Google Scholar 

  184. A.T. James, J.P.W. Webb and T.D. Kellock, ‘The Occurrence of Unusual Fatty Acids in Faecal Lipids from Human Beings with Normal and Abnormal Fat Absorption’, Biochem. J., 78 (1961), pp. 333–339.

    Google Scholar 

  185. E.L. Wynder and S. Takao, ‘Environmental Factors of Cancer of the Colon and Rectum’, Cancer, 20 (1967), pp. 1520–1561.

    Article  Google Scholar 

  186. W. Haenszel, ‘Cancer Mortality among the Foreign–born in the United States’, J. Natl Cancer Inst., 26 (1961), pp. 37–132.

    Google Scholar 

  187. J. Staszewski, M.G. McCall and N.S. Stenhouse, ‘Cancer Mortality in 1962–66 among Polish Migrants to Australia’, Br. J. Cancer, 25 (1971), pp. 599–610.

    Article  Google Scholar 

  188. M.J. Hill, ‘The Effect of some Factors on the Faecal Concentration of Acid Steroids, Neutral Steroids and Urobilins’ J. Path., 104 (1974), pp. 239–245.

    Google Scholar 

  189. J.S. Crowther, B.S. Drasar, P. Goddard, M.J. Hill and K. Johnson, ‘The Effect of a Chemically Defined Diet on the Faecal Flora and Faecal Steroid Con–centration’, Gut, 14 (1973), pp. 790–793.

    Article  Google Scholar 

  190. W.E. Connor, D.T. Witiak, D.B. Stone and M.L. Armstrong, ‘Cholesterol Balance and Faecal Neutral Steroids and Bile Acid Excretion in Normal Men Fed Dietary Fats of Different Fatty Acid Composition’, J. Gin. Invest., 48 (1965), pp. 1363–1375.

    Google Scholar 

  191. E. Quintao, S.M. Grundy and E.H. Ahrens, ‘Effect of Dietary Cholesterol on the Regulation of Total Body Cholesterol in Man’, J. Lipid Res., 12 (1971), pp. 233–247.

    Google Scholar 

  192. J.D. Wilson and C.A. Lindsey, ‘Studies on the Influence of Dietary Cholesterol Metabolism in the Isotopic Steady State in Man’, J. Gin. Invest., 44 (1965), pp. 1805–1814.

    Google Scholar 

  193. M.J. Hill, B.S. Drasar, R.E.O. Williams, T.W. Meade, A.G. Cox, J.E.P. Simpson and B.C. Morson, ‘Faecal Bile–Acids and Clostridia in Patients with Cancer of the Large Bowel’, Lancet, i (1975), pp. 535–538.

    Google Scholar 

  194. B.R. Goldin and S.L. Gorbach, ‘The Relationship Between Diet and Rat Faecal Bacterial Enzymes Implicated in Colon Cancer’, J. Natl Cancer Inst., 57 (1976), pp. 371–375.

    Google Scholar 

  195. B.S. Reddy and E.L. Wynder, ‘Large–Bowel Carcinogenesis Fecal Constituents of Populations with Diverse Incidence Rates of Colon Cancer’, J. Natl Cancer Inst., 50 (1972), pp. 1437–1442.

    Google Scholar 

  196. H.F. Mower, R.M. Ray, R. Shoff, G.N. Stemmermann, A. Nomura, G.A. Glober, S. Kamiyama, A. Shimada and H. Yamakawa, ‘Fecal Bile Acids in Two Japanese Populations with Different Colon Cancer Risks’, Cancer Res., 39 (1979), pp. 328–331.

    Google Scholar 

  197. IARC Intestinal Microecology Group, ‘Dietary Fibre, Transit–Time, Faecal Bacteria, Steroids and Colon Cancer in Two Scandinavian Populations’, Lancet, i (1977), pp. 207–211.

    Google Scholar 

  198. E.L. Wynder and B.S. Reddy, ‘The Epidemiology of Cancer of the Large Bowel’, Am. J. Dig. Dis., 19 (1974), pp. 937–946.

    Article  Google Scholar 

  199. T. Narisawa, N.E. Magadia, J.H. Weisburger and E.L. Wynder, ‘Promoting Effect of Bile Acids on Colon Carcinogenesis after Intrarectal Instillation of N–methyl–N’–nitro–N–nitrosoguanidine in Rats’ J. Natl Cancer Inst., 53 (1974), pp. 1093–1097.

    Google Scholar 

  200. S.J. Silverman and A.W. Andrews, ‘Bile Acids: Comutagenic Activity in the Salmonelta–Mammdhan Microsome Mutagenicity Test: Brief Communication’, J. Natl Cancer Inst., 59 (1977), pp. 1557–1559.

    Google Scholar 

  201. M.I. Kelsey and R.J. Pienta, ‘Transformation of Hamster Embryo Cells by Cholesterol–α–epoxide and Lithocholic Acid’, Cancer Lett., 6 (1979), pp. 143–149.

    Article  Google Scholar 

  202. V. Aries and M.J. Hill, ‘Degradation of Steroids by Intestinal Bacteria II. Enzymes Catalysing the Oxidoreduction of the 3α–, 7α– and 12α–hydroxy Groups in Cholic Acid and the Dehydroxylation of the 7–hydroxyl Group’, Biochim. Biophys. Acta, 202 (1970), pp. 535–543.

    Article  Google Scholar 

  203. M.J. Hill and V.C. Aries, ‘Faecal Steroid Composition and its Relationship to Cancer of the Large Bowel’, J. Pathol., 104 (1971), pp. 129–139.

    Article  Google Scholar 

  204. F. Fernandez and M. Hill, ‘A Faecal Hydrogen Acceptor for Clostridial 3–Oxo Steroid 4–Dehydrogenase’, Biochim. Soc. Trans., 6 (1978), pp. 376–377.

    Google Scholar 

  205. P. Lombardi, B. Goldin, E. Boutin and S.L. Gorbach, ‘Metabolism of Androgens and Estrogens by Human Faecal Microorganisms’, J. Steroid Biochem., 9 (1978), pp. 795–801.

    Article  Google Scholar 

  206. M.J. Hill, ‘The Role of Colon Anaerobes in the Metabolism of Bile Acids and Steroids, and its Relation to Colon Cancer’, Cancer, 36 (1975), pp. 2387–2400.

    Article  Google Scholar 

  207. S.M. Finegold, H.R. Attebery and V.L. Sutter, ‘Effect of Diet on Human Fecal Flora: Comparison of Japanese and American Diets’, Am. J. Gin. Nutr., 27 (1974), pp. 1456–1469.

    Google Scholar 

  208. S.M. Finegold, D.J. Flora, H.R. Attebery and V.L. Sutter, ‘Fecal Bacteriology of Colonic Polyp Patients and Control Patients’, Cancer Res., 35 (1975), pp. 3407–3417.

    Google Scholar 

  209. B.S. Reddy, A. Mastromarino, C. Gustafson, M. Lipkin and E.L. Wynder, ‘Fecal Bile Acids and Neutral Sterols in Patients with Familial Polyposis’, Cancer, 38 (1976), pp. 1694–1698.

    Article  Google Scholar 

  210. B.S. Reddy and E.L. Wynder, ‘Metabolic Epidemiology of Colon Cancer. Fecal Bile Acids and Neutral Sterols in Colon Cancer Patients and Patients with Adenomatous Polyps’, Cancer, 39 (1977), pp. 2533–2539.

    Article  Google Scholar 

  211. B.S. Reddy, C.W. Martin and E.L. Wynder, ‘Fecal Bile Acids and Cholesterol Metabolites of Patients with Ulcerative Colitis, a High Risk Group for Development of Colon Cancer’, Cancer Res., 37 (1977), pp. 1697–1701.

    Google Scholar 

  212. A.L, Watne, H.–Y.L. Hai, T. Mance and S. Core, ‘Fecal Steroids and Bacterial Flora in Patients with Polyposis Coli’, Am. J. Surg., 131 (1976), pp. 42–46.

    Article  Google Scholar 

  213. E. Bone, B.S. Drasar and M.J. Hill, ‘Gut Bacteria and their Metabolic Activities in Familial Polyposis’, Lancet, i (1975), pp. 1117–1120.

    Google Scholar 

  214. M. Moskovitz, C. White and M.H. Floch, ‘Bile Acid and Neutral Sterol Excretion in Carcinoma of the Colon, Other Cancers and Control Subjects’, Gastroenterology, 74 (1978), p. 107.

    Google Scholar 

  215. T.D. Wilkins and A.S. Hackman, ‘Two Patterns of Neutral Steroid Conversion in Faeces of Normal North Americans’, Cancer Res., 34 (1974), pp. 2250–2254.

    Google Scholar 

  216. A.A. Salyers, J.F. Sperry, T.D. Wilkins, A.R.P. Walter and N.J. Richardson, ‘Neutral Steroid Concentration in the Faeces of N. American White and S. African Black Populations at Different Risks for Cancer of the Colon’, S. African Med. J., 51 (1977), pp. 823–827.

    Google Scholar 

  217. P. Cruse, M. Lewin and C.G. Clark, ‘Dietary Cholesterol is Co-carcinogenic for Human Colon Cancer’, Lancet, i (1979), pp. 752–755.

    Google Scholar 

  218. M.J. Hill, B.C. Morson and H.J.R. Bussey, ‘Aetiology of Adenoma-carcinoma Sequence in Large Bowel’, Lancet, i (1978), pp. 245–247.

    Google Scholar 

  219. J.P. Cruse, M.R. Lewin, G.P. Ferulano and C.G. Clark, ‘Co-carcinogenic Effects of Dietary Cholesterol in Experimental Colon Cancer’, Nature (Lond.), 276 (1978), pp. 822–825.

    Article  Google Scholar 

  220. J. Melnykowycz and K.R. Johansson, ‘Formation of Amines by Intestinal Microorganisms and the Influence of Chlortetracycline’, J. Expl Med., 101 (1955), pp. 507–517.

    Article  Google Scholar 

  221. E.A. Phear and B. Ruebner, ‘The In Vitro Production of Ammonium and Amines by Intestinal Bacteria in Relation to Nitrogen Toxicity as a Factor in Hepatic Coma’, Br. J. Exp. Path., 37 (1956), pp. 253–262.

    Google Scholar 

  222. Anon, ‘Headache, Tyramine, Serotonin and Migraine’, Nutr. Rev., 26 (1968), pp. 40–44.

    Google Scholar 

  223. S.L. Rice, R.R. Eitenmiller and R.E. Koehler, ‘Biologically Active Amines in Food. A. Review’, J. Milk Fd Technol, 39 (1976), pp. 353–358.

    Google Scholar 

  224. W.T. Irvine, H. Duthie and N.G. Watson, ‘Urinary Output of Free Histamine After a Meat Meal’, Lancet, i (1959), pp. 1061–1064.

    Google Scholar 

  225. O.M. Bakke, ‘Studies on the Degradation of Tyrosine by Rat Caecal Contents’, Scand. J. Gastroenterol, 4 (1969), pp. 603–608.

    Article  Google Scholar 

  226. R.K. Boutwell in B.J. Finkle and V.C. Runeckles (eds.), Phenolic Compounds and Metabolic Regulation (Appleton-Century-Crofts, N.Y., 1967 ).

    Google Scholar 

  227. A. Angel and K.J. Rogers, ‘Convulsant Action of Polyphenols’, Nature (Lond.), 217 (1968), pp. 84–85.

    Article  Google Scholar 

  228. W.F. Rogers, M.P. Burdick and G.R. Burnett, ‘The Effect of Antibioticsa on the Excretion of Phenolic Compounds’, J. Lab. Clin. Med., 45 (1955), pp. 87–96.

    Google Scholar 

  229. R.D. DeMoss and K. Moser, Tryptophanase in Diverse Bacterial Species’, J. Bact., 98 (1969), pp. 167–171.

    Google Scholar 

  230. W.F. Dunning and M.R. Curtis, ‘The Role of Indole in Incidence of 2-cetylaminofluorene-induced Bladder Cancer in Rats’, Proc. Soc. Biol. Med., 99 (1958), pp. 91–99.

    Google Scholar 

  231. H.J. Dyer and H.P. Morris, ‘An Effect of N-2-fluorenylacetamide on the Metabolism of Tryptophan in Rats’, J. Natl Cancer Inst., 26 (1961), pp. 315–329.

    Google Scholar 

  232. G. Bryan, ‘The Role of Urinary Tryptophan Metabolite in the Etiology of Bladder Cancer’, Am. J. Clin. Nutr., 24 (1971), pp. 841–847.

    Google Scholar 

  233. H. Ehrhart and W. Stich, ‘Untersuchungen über Experimentelle Leukämien: Die Indol. Leukämie bei der weissen Mans’, Klin. Wochenschr., 35 (1957), pp. 504–511.

    Article  Google Scholar 

  234. M.O. Rauschenbakn, E.I. Zharova and T.G. Protasova, ‘Blastomogenic Properties of Certain Metabolites of Tryptophan’, Acta Un. Int. Contra Cancrum., 19 (1963), p. 660.

    Google Scholar 

  235. J.P. Bowden, K.-T. Chung and A.W. Andrews, ‘Mutagenic Activity of Tryptophan Metabolites Produced by Rat Intestinal Microflora’, N. Natl Cancer Inst., 57 (1966), pp. 921–924.

    Google Scholar 

  236. C.A. Benassi, F.M. Veronese and A. De Antoni, ‘On the Determination of Small Amounts of Tryptophan Metabolites and their Occurrence in Normal Human Urine’, Gin. Chim. Acta, 17 (1967), pp. 383–391.

    Article  Google Scholar 

  237. F.A.G. Teulings, W. Fokkens, J.G.A.H. Kaalen and B. Van Der Werf-Messing, ‘The Concentration of Free and Conjugated 3-Hydroxyanthranilic Acid in the Urine or Bladder Tumour Patients Before and After Therapy, Measured with an Enzymatic Method’, Br. J. Cancer, 27 (1973), pp. 316–322.

    Article  Google Scholar 

  238. J.W. Berg and M.A. Howell, ‘The Geographic Pathology of Bowel Cancer’, Cancer, 34 (1974), pp. 807–814.

    Article  Google Scholar 

  239. S. Graham, H. Dayal, M. Swanson, A. Mittelman and G. Wilkinson, ‘Diet in the Epidemiology of Cancer of the Colon and Rectum’, J. Natl Cancer Inst., 61 (1978), pp. 709–714.

    Google Scholar 

  240. D.D. Kasarda, ‘Coeliac Disease. Malabsorption of Nutrients Induced by a Toxic Factor in Gluten’, Bakers Digest, 46 (1972), p. 25.

    Google Scholar 

  241. A. Ferguson, ‘Coeliac Disease (Gluten Hypersensitivity)’, J. Human Nutr., 30 (1976), pp. 193–201.

    Google Scholar 

  242. O.D. Lowlessar, ‘Dietary Gluten Sensitivity Updated’ J. Am. Diet Assoc., 60 (1972), pp. 475–477.

    Google Scholar 

  243. M.L. Roselund, ‘What is Celiac Disease?’, Clin Pediatrics, 9 (1970), p. 695.

    Google Scholar 

  244. C.M. Anderson, A.C. Frazer, J.M. French, J.W. Gerrard, H.G. Sammons and J.M. Smellie, ‘Coeliac Disease: Gastro-Intestinal Studies and the Effect of Dietary Wheat Flour’, Lancet, i (1952), pp. 836–842.

    Google Scholar 

  245. M. Messer and C.M. Anderson, ‘Pancreatic Carboxypeptidases A and B in Coeliac Disease’, Clin. Chim. Acta, 6 (1961), pp. 276–280.

    Article  Google Scholar 

  246. M. Messer, C.M. Anderson and R.R.W. Townley, ‘Peptidase Activity of Biopsies of the Duodenal Mucosa of Children with and without Celiac Disease’, Gin. Chim. Acta, 6 (1961), pp. 768–775.

    Article  Google Scholar 

  247. H.J. Cornell and C.J. Rolles, ‘Further Evidence of a Primary Mucosal Defect in Coeliac Disease’, Gut, 19 (1978), pp. 253–259.

    Article  Google Scholar 

  248. C.F. Langworthy and H.J. Deuel, ‘Digestibility of Raw Corn, Potato and Wheat Starches’ J. Biol. Chem., 42 (1920), pp. 27–40.

    Google Scholar 

  249. J.W. Beazell, C.R. Schmidt and A.C. Ivy, ‘On the Digestibility of Raw Potato Starch in Man’ J. Nutr., 17 (1939), pp. 77–83.

    Google Scholar 

  250. B. Jelinek, M.C. Katayama and A.E. Harper, ‘The Inadequacy of Un-modified Potato Starch as Dietary Carbohydrate for the Albino Rat’, Can. J. med.Sci.,30 (1952), p. 447.

    Google Scholar 

  251. E.A. El Harith, J.W.T. Dickerson and R. Walker, ‘Potato Starch and Caecal Hypertrophy in the Rat’, Fd Cornet. Toxicol., 14 (1976), pp. 115–121

    Article  Google Scholar 

  252. C.T. Whittemore, I.W. Moffat and A.G. Taylor, ‘Influence of Cooking upon the Nutritive Value of Potato and Maize in Diets for Growing Pigs’, J. Sci. Fd Agric., 26 (1975), pp. 1567–1576.

    Article  Google Scholar 

  253. E.A. El Harith, R. Walker, G.G. Birch and G. Sukan, ‘Some Factors Influencing Caecal Enlargement Induced by the Raw Potato Starch in the Rat’, Fd Chem., 2 (1977), pp. 279–289.

    Article  Google Scholar 

  254. R. Walker and E.A. El Harith, ‘Nutritional and Toxicological Properties of some Raw and Modified Starches’, Ann Nutr. Alim., 32 (1978), pp. 671–679.

    Google Scholar 

  255. A.O. Ketiku and V.A. Oyenuga, ‘Changes in the Carbohydrate Constituents of Cassava Root–Tuber (Manihot Utillissima Pohl) during Growth’, J. Sci. Fd Agric., 23 (1972), pp. 1451–1456.

    Article  Google Scholar 

  256. R. Walker, ‘Some Observations on the Phenomenon of Caecal Enlargement in the Rat’ in C.L. Galli, R. Paoletti and G. Vettorazzi (eds.), Chemical Toxicology of Food ( Elsevier/North Holland, Amsterdam, 1978 ), pp. 339–348.

    Google Scholar 

  257. E.A. El Harith, J.W.T. Dickerson and R. Walker, ‘On the Nutritive Value of Various Starches for the Albino Rat’ J. Sci. Fd Agric., 21 (1976), pp. 521– 526.

    Google Scholar 

  258. G. Reussner, J. Andros and R. Thiessen, ‘Studies on the Utilization of Various Starches and Sugars in the Rat’ J. Nutr., 80 (1963), p. 291.

    Google Scholar 

  259. G.G. Birch and I.J. Etheridge, ‘Chemical and Physiological Properties of Glucose Syrup Components’, Starke., 25 (1973), p. 235.

    Article  Google Scholar 

  260. G.G. Birch, I.J. Etheridge and L.F. Green, ‘Short-term Effects of Feeding Rats with Glucose Syrup Fractions and Dextrose’, Br. J. Nutr., 29 (1973), p. 87.

    Article  Google Scholar 

  261. F.R. Steggerda, E.A. Richards and J.J. Rackis, ‘Effects of Various Soybean Products on Flatulence in the Adult Man’, Proc. Soc. Expl Biol. Med., 121 (1966), pp. 1235–1239.

    Google Scholar 

  262. E.A. Richards and F.R. Steggerda, ‘Production and Inhibition of Gas in Various Regions in the Intestine of the Dog’, Proc. Soc. Expl Biol. Med., 122, (1966).

    Google Scholar 

  263. E.A. Richards, F.R. Steggerda and A. Murata, ‘Relationship of Bean Substrate and Certain Intestinal Bacteria to Gas Production in the Dog’, Gastro-enterol., 55 (1968), p. 502.

    Google Scholar 

  264. G.O. Aspinwall, K. Hunt and I.N. Morrison, ‘Polysaccharides of Soybeans. III. Extraction and Fractionation of Polysaccharides from Cotyledon Meal’ J. Chem. Soc., (1967),pp. 1065–1070.

    Google Scholar 

  265. D.H. Calloway and E.L. Murphy, ‘The Use of Expired Air to Measure Intestinal Gas Formation’, Ann. N. Y. Acad. Sci., 150 (1968), p. 82.

    Article  Google Scholar 

  266. D.P. Burkitt, ‘Disease of the Alimentary Tract and Western Diets’, Path. Microbiol, 39 (1973), pp. 177–186.

    Google Scholar 

  267. G.A. Spiller and R.J. Amen, ‘Plant Fibers in Nutrition: Need for Better Nomenclature’, Am. J. Gin. Nutr., 28 (1975), pp. 675–676.

    Google Scholar 

  268. D.A.T. Southgate, ‘Determination of Carbohydrates in Foods. II — Unavailable Carbohydrates’ J. Sci. Fd Agric., 20 (1969), pp. 331–335.

    Article  Google Scholar 

  269. R.J. Van Soest and R.W. McQueen, ‘The Chemistry and Estimation of Fiber’, Proc. Nutr. Soc., 32 (1973), pp. 123–130.

    Article  Google Scholar 

  270. P.J. Van Soest, ‘The Uniformity and Nutritive Availability of Cellulose’, Fed. Proc., 32 (1973), pp. 1804–1808.

    Google Scholar 

  271. A.I. Mendeloff, ‘Dietary Fiber’, Nutr. Rev., 33 (1975), pp. 321–326.

    Article  Google Scholar 

  272. N.S. Painter, A.Z. Almeida and K.W. Colebourne, ‘Unprocessed Bran in Treatment of Diverticular Disease of the Colon’, Br. Med. J., 2 (1972), pp. 137–140. s

    Google Scholar 

  273. A.J. Carlson and F. Moelzel, ‘Relation of Diet to Diverticulosis of the Colon in Rats’, Gastroenterology, 12 (1949), pp. 108–115.

    Google Scholar 

  274. S. Graham, H. Dayal, M. Swanson, A. Mittelman and G. Wilkinson, ‘Diet in the Epidemiology of Cancer of the Colon and Rectum’, J. Natl Cancer Inst., 61 (1978), pp. 709–714.

    Google Scholar 

  275. M.A. Eastwood and D. Hamilton, ‘Studies on the Adsorption of Bile Salts to Non-Absorbed Components of Diet’, Biochim. Biophys. Acta, 152 (1968), pp. 165–173.

    Article  Google Scholar 

  276. D.P. Burkitt, ‘Epidemiology of Cancer of the Colon and Rectum’, Cancer, 28 (1971), pp. 3–13.

    Article  Google Scholar 

  277. D.P. Burkitt, A.R.P. Walker and N.S. Painter, ‘Effect of Dietary Fibre on Stools and Transit–times, and its Role in the Causation of Disease’, Lancet, ii (1972), pp. 1408–1409.

    Google Scholar 

  278. R.L. Walters, I. McLean Baird, P.S. Davies, M.J. Hill, B.S. Drasar, D.A.T. Southgate, J. Green and B. Morgan, ‘Effects of Two Types of Dietary Fibre on Faecal Steroid and Lipid Excretion’, Br. Med. J., 2 (1975), pp. 536–538.

    Article  Google Scholar 

  279. J.M. Findlay, A.N. Smith, W.D. Mitchell, A.J.B. Anderson and M.A. Eastwood, ‘Effects of Unprocessed Bran on Colon Function in Normal Subjects and in Diverticular Disease’, Lancet, i (1974), pp. 146–149.

    Google Scholar 

  280. M.A. Eastwood, J.R. Kirkpatrick, W.D. Mitchell, A. Bone and T. Hamilton, ‘Effects of Dietary Supplements of Wheat Bran and Cellulose on Faeces and Bowel Function’, Br. Med. J., 4 (1978), pp. 392–394.

    Article  Google Scholar 

  281. M. Stasse-Wolthuis, H.F.F. Albers, J.G.C. Van Jeveren, J.W. de Jong, J.G.A. J. Hautvast, R.J.J. Hermus, M.B. Katan, W.G. Brydon and M.A. Eastwood, ‘Influence of Dietary Fiber from Vegetables and Fruit, Bran or Citrus Pectin on Serum Lipids, Fecal Lipids, and Colonic Function’, Am. J. Clin. Nutr., 33 (1980), pp. 1745–56.

    Google Scholar 

  282. J.H. Cummings, D.A.T. Southgate, W. Branch, H. Houston, D.J.A. Jenkins and W.P.T. James, ‘Colonic Response to Dietary Fibre from Carrot, Cabbage, Apple, Bran and Guar Gum’, Lancet, i (1978), pp. 5–8.

    Google Scholar 

  283. O.K. Payler, E.W. Pomare, K.W. Heaton and R.F. Harvey, ‘The Effect of Wheat Bran on Intestinal Transit’, Gut, 16 (1978), pp. 209–213.

    Article  Google Scholar 

  284. D. Kritchevsky and J.A. Story, ‘Binding of Bile Salts in vitro by Non-nutritive Fiber’, J. Nutr., 104 (1974), pp. 458–461.

    Google Scholar 

  285. M.A. Eastwood, R. Anderson, W.D. Mitchell, J. Roberton and S. Pocock, ‘A Method to Measure the Adsorption of Bile Salts to Vegetable Fibre of Differing Water Holding Capacity’, J. Nutr., 106 (1976), pp. 1429–1432.

    Google Scholar 

  286. M.J. Hill, J.S. Crowther, B.S. Drasar, G. Hawksworth, V. Aries and R.E.O. Williams, ‘Bacteria and Aetiology of Cancer of Large Bowel’, Lancet, i (1971), pp. 95–100.

    Google Scholar 

  287. B.S. Reddy, A.R. Hedges, K. Laakso and E.L. Wynder, ‘Metabolic Epidemiology of Large Bowel Cancer. Fecal Bulk and Constituents of High-Risk North American and Low-Risk Finnish Population’, Cancer, 42 (1978), pp. 2832–2838.

    Article  Google Scholar 

  288. A. Antonis and I. Bersohn, ‘The Influence of Diet on Fecal Lipids in South African White and Bantu Prisoners’, Am. J. Clin. Nutr., 11 (1962), pp. 142–155.

    Google Scholar 

  289. G.A. Spiller, ‘Interactions of Plant Fibers and Levels of Dietary Cholesterol on Fecal Neutral Sterols Excretion’, J. Nutr., 7 (1976), X XVI.

    Google Scholar 

  290. B.H. Ershoff, ‘Beneficial Effects of Alfalfa and Other Succulent Plants on Glucascorbic Acid Toxicity in the Rat’, Proc. Soc. Exp. Biol Med., 85 (1957), pp. 656–659.

    Google Scholar 

  291. B. Ershoff and E.W. Thurston, ‘Effect of Diet on Amaranth (FDamp;C Red No. 2) Toxicity in the Rat’, J. Nutr., 104 (1974), pp. 937–942.

    Google Scholar 

  292. T. Kimura, H. Furuta, Y. Matsumoto and A. Yoshida, ‘Ameliorating Effect of Dietary Fiber on Toxicities of Chemicals Added to a Diet in the Rat’, J. Nutr., 110 (1980), pp. 513–521.

    Google Scholar 

  293. B.H. Ershoff, ‘Comparative Effects of a Purified and Stock Ration on Sodium Cyclamate Toxicity in Rats’, Proc. Soc. Exp. Biol. Med., 141 (1972), pp. 857–862.

    Google Scholar 

  294. J.M. Ward, R.S. Yammamoto and J.H. Weisburger, ‘Cellulose Dietary Bulk and Azoxymethane–induced Intestinal Cancer’ J. Natl Cancer Inst., 51 (1973), pp. 713–715.

    Google Scholar 

  295. N.D. Nigro, A.W. Bull, B.A. Klopfer, M.S. Pak and R.L. Campbell, ‘Effect of Dietary Fiber on Azoxymethane–induced Intestinal Carcinogenesis in Rats’, J. Natl Cancer Inst., 62 (1979), pp. 1097–1102.

    Google Scholar 

  296. R.W. Engel and D.H. Copeland, ‘Protective Action of Stock Diets Against the Cancer-inducing Action of 2-acetylaminofluorene in Rats’, Cancer Res., 12 (1952), pp. 211–215.

    Google Scholar 

  297. M.G. Whiting, ‘Toxicity of Cycads’, Econ. Bot., 17 (1963), p. 271.

    Article  Google Scholar 

  298. G.L. Laqueur and M. Spatz, ‘Toxicology of Cycasin’, Cancer Res., 28 (1968), p. 2262.

    Google Scholar 

  299. K. Nishida, A. Kobayashi and T. Nagahama, ‘Cycasin, a New Toxic Glycoside of Cycas revoluta Thumg., 1. Isolation and Structure of Cycasin’, Bull. Agric. Chem. Soc. Jap., 19 (1955), p. 77.

    Article  Google Scholar 

  300. N.V. Riggs, Glucosylazoxymethane, a Constituent of the Seeds of Cycas circinalis L. J Chemy. Ind., (1956), p. 926.

    Google Scholar 

  301. Anon, ‘Cycad: The Fruits of Conversion’, Fd Cosmet. Toxicol, 10 (1972), p. 246.

    Google Scholar 

  302. G.L. Laqueur and H. Matsumoto, ‘Neoplasms in Female Fisher Rats Following Intraperitoneal Injection of Methylazoxy-methanol’, J. Natl Cancer Inst., 37 (1966), pp. 217–232.

    Google Scholar 

  303. K. Nishida, A. Kobayashi and T. Nagahama, ‘Studies on Cycasin, a New Toxic Glycoside of Cycas revoluta Thunb, Part IV. Pharmacology of Cycasin’, Seikagaku, 28 (1956), pp. 218–23.

    Google Scholar 

  304. P.B. Magee, IVth Conference on the Toxicity of Cycads, Bethesda, Maryland, 1965.

    Google Scholar 

  305. G.L. Laqueur, Vth Conference on Cycad Toxicity, Univ. Miami, Florida, 1967.

    Google Scholar 

  306. E.E. Conn, ‘Cyanogenic Glycosides’, J. Agric. Fd Chem., 17 (1969), pp. 519–526.

    Article  Google Scholar 

  307. R. Ferrando, M.M. Guilleux and A. Guerilott-Vinet, ‘Oestrogen Content of Plants as a Function of Conditions of Culture’, Nature, Lond., 192 (1961), p. 1205.

    Article  Google Scholar 

  308. M.W. Carter, G. Matrone and W.G. Smart, ‘Effect of Genistin on Reproduction of the Mouse’, J. Nutr., 55 (1955), pp. 639–645.

    Google Scholar 

  309. R.B. Bradbury and D.E. White, ‘The Chemistry of Subterranean Clover. I. Isolation of Formononetin and Genistein’, J. Chem. Soc. (1951), pp. 3447–3449.

    Google Scholar 

  310. A.N. Booth, E.M. Bickoff and G.O. Kohler, ‘Estogen-like Activity in Vegetable Oil and Mill By-products’, Science, 131 (1960), pp. 1807–1808.

    Article  Google Scholar 

  311. L.A. Griffiths and G.E. Smith, ‘Metabolism of Apigenin and Related Compounds in the Rat. Metabolite Formation In vivo and by the Intestinal Microflora In Vitro Biochem. J., 128 (1972), pp. 901–911.

    Google Scholar 

  312. A. Nilsson, J.L. Hill and H.L. Davies, ‘An In Vitro study of Formononetin and Biochanin A Metabolism in Rumen Fluid from Sheep’, Biochim. Biophys Acta, 148 (1967), pp. 92–98.

    Article  Google Scholar 

  313. M.N. Cayen, A.L. Carter and R.H. Common, ‘The Conversion of Genistein to Equol in the Fowl’, Biochim. Biophys. Acta, 86 (1964), pp. 56–64.

    Article  Google Scholar 

  314. M.N. Cayen, G. Tang and R.H. Common, ‘Urinary Conversion Products of Biochanin A and Formononetin in the Fowl’, Biochim. Biophys. Acta, 111 (1965), pp. 349–357.

    Article  Google Scholar 

  315. T.J. Batterham, N.K. Hart, J.A. Lamberton and A.W.H. Braden, ‘Metabolism of Oestrogenic Isoflavones in Sheep’, Nature, Lond., 206 (1965), p. 509.

    Article  Google Scholar 

  316. I.E. Liener, Toxic Constituents of Plant Foodstuffs, Chapter 2 ( Academic Press, London amp; New York, 1980 ).

    Google Scholar 

  317. W.G. Jaffe, ‘Haemagluttinins (Lectins)’, in I.E. Liener (ed.), Toxic Constituents of Plant Foodstuffs 2nd edn (Academic Press, London amp; New York, 1980 ), Chapter 3.

    Google Scholar 

  318. N.D. Noah, A.E. Bender, G.B. Reaidi and R.J. Gilbert, ‘Food Poisoning from Raw Red Kidney Beans’, Br. Med. J., 281 (1980), pp. 236–237.

    Google Scholar 

  319. P. Sisley and C. Porscher, ‘Du Sort Des Matières Colorantes Dans l’organisme Animal’, C. r. Hebd. Séanc. Acad. Sci., Paris, 152 (1911), p. 1062.

    Google Scholar 

  320. A.T. Fuller, ‘Is p-aminobenzenesulphonamide the Active Agent in Prontosil Therapy?’, Lancet, i (1937), p. 194.

    Google Scholar 

  321. J.L. Radomski and T.J. Mellinger, ‘The Absorption, Fate and Excretion in Rats of the Water-soluble Azo Dyes, FDamp;C Red No. 2, FDamp;C Red No. 4 and FDamp;C Yellow No. 6’, J. Pharm. exp. Ther., 136 (1962), pp. 259–266.

    Google Scholar 

  322. R. Jones, A.J. Ryan and S.E. Wright, ‘The Metabolism and Excretion of Tartrazine in the Rat, Rabbit and Man’, Fd Cosmet. Toxicol., 2 (1964), pp. 447–452.

    Article  Google Scholar 

  323. H. Fore, R. Walker and L. Golberg, ‘Studies on Brown FK II. Degradative Changes Undergone In Vitro and In Vivo’ Fd Cosmet. Toxicol., 5 (1967), pp. 459–473.

    Article  Google Scholar 

  324. R. Walker and A.J. Ryan, ‘Some Molecular Parameters Influencing Rate of Reduction of Azo Compounds by Intestinal Microflora’, Proceedings of Symposium on the Biological Oxidation of Nitrogen in Organic Molecules, (Taylor amp; Francis, London, 1971 ), pp. 171–174.

    Google Scholar 

  325. A.J. Ryan, J.J. Roxon and A. Sivayavirojana, ‘Bacterial Azo Reduction: a Metabolic Reaction in Mammals’, Nature, Lond., 219 (1968), pp. 854–855.

    Article  Google Scholar 

  326. 1.F. Gaunt, ‘Studies on the Relationship Between Heinz Bodies and Haemolysis in Laboratory Animals and the Evaluation of Heinz Body Production in Toxicological Investigations’, Ph.D. Thesis, University of London.

    Google Scholar 

  327. T. Watabe, N. Ozawa, Kobayashi and H. Kurata, ‘Reduction of Sulphonated Water-soluble Azo Dyes by Microorganisms from Human Faeces’, Fd Cosmet. Toxicol, 18 (1980), pp. 349–352.

    Article  Google Scholar 

  328. A.J. Ryan and P.G. Welling, ‘The Metabolism and Excretion of Black PN in the Rat and Man’, Fd Cosmet. Toxicol, 8 (1970), pp. 487–497.

    Article  Google Scholar 

  329. T. Honohan, F.E. Enderlin, B.A. Ryerson and T.M. Parkinson, ‘Intestinal Absorption of Polymeric Derivatives of the Food Dyes Sunset Yellow and Tartrazine in Rats’, Xenobiotica, 7 (1977), pp. 765–774.

    Article  Google Scholar 

  330. A.J. Ryan and S.E. Wright, ‘The Excretion of Some Azo Dyes in Rat Bile’, J. Pharm. Pharmacol, 13 (1961), pp. 492–495.

    Article  Google Scholar 

  331. P. Grasso and L. Golberg, ‘Problems Confronted and Lessons Learnt in the Safety Evaluation of Brown FK’, Fd Cosmet. Toxicol, 6 (1968), pp. 737–747.

    Article  Google Scholar 

  332. R. Walker, P. Grasso and I.F. Gaunt, ‘Myotoxicity of Amine Metabolites from Brown FK’, Fd Cosmet. Toxicol, 8 (1970), pp. 539–542.

    Article  Google Scholar 

  333. S. Vennitt and C.T. Bushell, ‘Mutagenicity of the Food Colour Brown FK and Constituents in Salmonella typhimurium’ Mutat. Res., 40 (1976), p. 309.

    Article  Google Scholar 

  334. S.M. Hess and O.G. Fitzhugh, ‘Absorption and Excretion of Certain Triphenylmethane Colours in Rats and Dogs’, J. Pharmacol exp. Ther., 114 (1955), p. 38.

    Google Scholar 

  335. 335.1.F. Gaunt, J. Hardy, I.S. Kiss and S.D. Gangolli, ‘Short-term Toxicity of Violet 6B (FDamp;C Violet No. 1) in the Rat’, Fd Cosmet. Toxicol., 12 (1974), pp. 11–19.

    Article  Google Scholar 

  336. P. Grasso, J. Hardy, I.F. Gaunt, P.L. Mason and A. Lloyd, ‘Long-term Toxicity of Violet 6B (FDamp;C Violet No. 1) in Mice’, Fd Cosmet. Toxicol., 12 (1974), pp. 21–31.

    Article  Google Scholar 

  337. J.P. Brown, A. Dorsky, F.E. Enderlin, R.L. Hale, V.A. Wright and T.M. Parkinson, ‘Synthesis of 14C–labelled FDamp;C Blue No. 1 (Brilliant Blue FCF) and its Intestinal Absorption and Metabolic Fate in Rats’, Fd Cosmet. Toxicol., 18 (1980), pp. 1–5.

    Article  Google Scholar 

  338. J.C. Phillips, D. Mendis, C.T. Eason and S.D. Gangolli, ‘The Metabolic Disposition of 14C-labelled Green S and Brilliant Blue FCF in the Rat, Mouse and Guinea Pig’, Fd Cosmet. Toxicol., 18 (1980), pp. 7–13.

    Article  Google Scholar 

  339. K.R. Butterworth, I.F. Gaunt, P. Grasso and S.D. Gangolli, ‘Acute and Short-term Toxicity Studies on Erythrosine BS in Rodents’, Fd Cosmet. Toxicol., 14 (1976), pp. 525–531.

    Article  Google Scholar 

  340. E.J. Ethco and J.M. Webb, ‘The Fate of FDamp;C Blue No. 2 in Rats’, J. Pharmacol, exp. Ther., 154 (1966), pp. 384–389.

    Google Scholar 

  341. I.F. Gaunt, I.S. Kiss, P. Grasso and S.D. Gangolli, ‘Short-term Toxicity Study on Indigo Carmine in the Pig’, Fd Cosmet. Toxicol., 7 (1969), pp. 17–24.

    Article  Google Scholar 

  342. L.W. Hazleton, T.W. Tusing, B.R. Zeitlin, R. Thiessen and M.K. Murer, ‘Toxicity of Coumarin’, J. Pharmacol, exp. Ther., 118 (1956), pp. 348–358.

    Google Scholar 

  343. A.J. Cohen, ‘Critical Review of the Toxicology of Coumarin with Special Reference to Interspecies Differences in Metabolism and Hepatotoxic Response and their Significance to Man’, Fd Cosmet. Toxicol., 17 (1979), pp. 277–289.

    Article  Google Scholar 

  344. W.H. Shilling, R.F. Crampton and R.C. Longland, ‘Metabolism of Coumarin in Man’, Nature, Lond., 221 (1969), p. 664.

    Article  Google Scholar 

  345. R.C. Longland, W.H. Shilling and S.D. Gangolli, ‘The Hydrolysis of Flavouring Esters by Artificial Gastro-intestinal Juices and Rat Tissue Preparations’, Toxicology, 8 (1977), pp. 197–204.

    Article  Google Scholar 

  346. Fem A, Scientific Literature Review of Aliphatic Primary Alcohols, Aldehydes, Esters and Acids in Flavor Usage. (National Information Services/ Food amp; Drug Administration: Washington DC, 1974 ).

    Google Scholar 

  347. F. Grundschober, ‘Toxicological Assessment of Flavouring Esters’, Toxicology, 8 (1977), pp. 387–390.

    Article  Google Scholar 

  348. J.C. Phillips, J. Kingsnorth, S.D. Gangolli and I.F. Gaunt, ‘Studies on the Absorption, Distribution and Excretion of Citral in the Rat and Mouse’, Fd Cosmet. Toxicol., 14 (1976), pp. 537–540.

    Article  Google Scholar 

  349. H. Igimi, M. Nishimura, R. Kodama and H. Ide, Studies on the Metabolism of Mimonene (p-mentha-1,8-diene). 1. The Absorption, Distribution and Excretion of d-limonene in the Rat’, Xenobiotica, 4 (1974), pp. 77-84.

    Google Scholar 

  350. D.L.J. Opdyke, ‘Fragrance Raw Materials Monographs, 1-carvone’, Fd Cosmet. Toxicol, 11 (1973), pp. 1057–1058.

    Article  Google Scholar 

  351. D.L.J. Opdyke, ‘Fragrance Raw Materials Monographs, d-carvone’, Fd Cosmet. Toxicol, 16, Suppl. 1 (1978), pp. 673–674.

    Google Scholar 

  352. G. Kennedy, O.E. Fancher and J.C. Calandra, ‘Metabolic Fate of Saccharin in the Albino Rat’, Fd Cosmet. Toxicol, 10 (1972), pp. 143–149.

    Article  Google Scholar 

  353. R.L. Anderson, ‘Response of Male Rats to Sodium Saccharin Ingestion: Urine Composition and Mineral Balance’, Fd Cosmet. Toxicol., 17 (1979), pp. 195–200.

    Article  Google Scholar 

  354. R.L. Anderson and J.J. Kirkland, ‘The Effect of Sodium Saccharin in the Diet on Caecal Microflora’, Fd Cosmet. Toxicol, 18 (1980), pp. 353–355.

    Article  Google Scholar 

  355. Anon, ‘Cyclamate Still to the Fore’, Fd Cosmet. Toxicol., 10 (1972), pp. 237–243.

    Article  Google Scholar 

  356. S. Kojima and H. Ichibagase, ‘Studies on Synthetic Sweetening Agents VIII. Cyclohexylamine, a Metabolite of Sodium Cyclamate’, Chem. Pharm. Bull. (Japan), 14 (1966), pp. 971–974.

    Article  Google Scholar 

  357. J.S. Leahy, M. Wakefield and T. Taylor, ‘Urinary Excretion of Cyclo-hexylamine Following Oral Administration of Sodium Cyclamate to Man’, Fd Cosmet. Toxicol., 5 (1967), p. 447.

    Article  Google Scholar 

  358. J.S. Leahy, T. Taylor and CJ. Rudd, ‘Cyclohexylamine Excretors Among Human Volunteers given Cyclamate’, Fd Cosmet. Toxicol, 5 (1967), pp. 595–6.

    Article  Google Scholar 

  359. J. Watt and R. Marcus, ‘Effect of Degraded and Undegraded Alginates on the Colon of Guinea Pig’, Proc. Nutr. Soc., 30 (1971), p. 81A.

    Google Scholar 

  360. A.P. De Groot, H.P. Til, V.J. Feron, H.C. Dreef-van der Meulen and M.I. Willem s, ‘Two-year Feeding and Multigeneration Studies in Rats on Five Chemically Modified Starches’, Fd Cosmet. Toxicol, 12 (1974), pp. 651–663.

    Article  Google Scholar 

  361. T.A. Anderson, L.J. Filer, S.J. Fomen, D.W. Andersen, R.L. Jensen and R.R. Rogers, ‘Digestibility of Acetylated Distarch Glycerol-Effect on Growth, Serum Biochemical Values and Body Composition of Pitman–Moore Miniature Pigs’, Fd Cosmet. Toxicol, 12 (1974), pp. 201–207.

    Article  Google Scholar 

  362. M.L. Buttolph and P.M. Newberne, ‘Sub–chronic Studies in Rats Fed Octenyl Succinate-modified Food Starch’, Fd Cosmet. Toxicol, 18 (1980), pp. 357–362.

    Article  Google Scholar 

  363. Joint FAO/WHO Expert Committee on Food Additives, ‘Tenth Report — Specifications for the Identity and Purity of Food Additives and their Toxicological Evaluation: Some Emulsifiers and Stabilizers and Certain Other Substances’, Tech. Rep. Ser. Wld Hlth Org., 373 (1967).

    Google Scholar 

  364. W.H. Braun, J.C. Ramsey and P.J. Gehring, ‘The Lack of Significant Absorption of Methyl Cellulose, Viscosity 3300 cp, from the Gastro–intestinal Tract Following Single and Multiple Oral Doses to the Rat’, Fd Cosmet. Toxicol, 12 (1974), pp. 373–376.

    Article  Google Scholar 

  365. G. Feuer, ‘Metabolic Rate of 32P–labelled Emulsifier YN in Rats’, Fd Cosmet. Toxicol, 5 (1967), pp. 631–643.

    Article  Google Scholar 

  366. J.C. Phillips, I.F. Gaunt and S.D. Gangolli, ‘Studies on the Metabolic Rats of 32P-labelled Emulsifier YN in the Mouse, Guinea Pig and Ferret’, Fd Cosmet. Toxicol, 13 (1975), pp. 23–30.

    Article  Google Scholar 

  367. J.C. Phillips, J. Kingsnorth, I. Rowland, S.D. Gangolli and A.G. Lloyd, ‘Studies on the Metabolism of Sucrose Acetate Isobutyrate in the Rat and Man’, Fd Cosmet. Toxicol, 14 (1976), pp. 375–380.

    Article  Google Scholar 

  368. J.W. Daniel, C.J. Marshall, H.F. Jones and D.J. Snodin, ‘The Metabolism of Beef Tallow Sucrose Esters in Rat and Man’, Fd Cosmet. Toxicol, 17 (1979), pp. 19–21.

    Article  Google Scholar 

  369. R.S. Harris, H. Sherman and W.W. Jetter, ‘Nutritional and Pathological Effects of Sorbitan Monolaurate, Polyoxyethylene Sorbitan Monolaurate and Polyoxyethylene Monolaurate when Fed to Hamsters’, Arch. Biochem. Biophys., 34 (1951), pp. 259–265.

    Article  Google Scholar 

  370. J.B. Allison, H.L. Rosenthal and A.H. Mills, ‘Effects of Nonionic Surface Active Agents on the Growth of Animals’, Fedn Proc., 11 (1952), p. 435.

    Google Scholar 

  371. A.R. Bourke and O.G. Fitzhugh, ‘High and Low Levels of Emulsifiers on Rat Intestinal Flora’, Fedn Proc., 12 (1953), p. 302.

    Google Scholar 

  372. P. Gyorgy, M. Forbes and H. Goldblatt, ‘Effect of Nonionic Emulsifiers on Experimental Dietary Injury of the Liver in Rats’, J. Agric. Fd Chem., 6 (1958), pp. 139–142.

    Article  Google Scholar 

  373. P.H. Elworthy and J.F. Treon, ‘Physiological Activity of Non–ionic Surfactants’ in M. Schick (ed.), Nonionic Surfactants Surfactant Science Series ( Marcel Dekker, New York, 1967 ), vol. 1, p. 923.

    Google Scholar 

  374. B.R. Cater, K.R. Butterworth, I.F. Gaunt, J. Hooson, P. Grasso and S.D. Gangolli, ‘Short-term Toxicity Study of Sorbitan Monolaurate (Span 20) in Rats’, Fd Cosmet. Toxicol, 16 (1978), pp. 519–526.

    Article  Google Scholar 

  375. A.J. Ingram, K.R. Butterworth, I.F. Gaunt, P. Grasso and S.D. Gangolli, ‘Short-term Toxicity Study of Sorbitan Mono-oleate (Span 80) in Rats’, Fd Cosmet. Toxicol., 16 (1978), pp. 535–542.

    Article  Google Scholar 

  376. W.R. King, W.R. Michael and R.H. Coots, ‘Metabolism of Polyglycerol and Polyglycerol Esters’, Toxicol Appl. Pharmacol., 20 (1971), pp. 334–345.

    Google Scholar 

  377. W.R. King, W.R. Michael and R.H. Coots, ‘Metabolism of Stearoyl Propylene Glycol Hydrogen Succinate’, Toxicol Appl Pharmacol., 17 (1970), pp. 519–528.

    Article  Google Scholar 

  378. P.P. Williams, ‘Metabolism of Synthetic Organic Pesticides by Anaerobic Microorganisms’, Residue Rev., 66 (1977), pp. 63–135.

    Article  Google Scholar 

  379. R.C. Braunberg and V. Beck, ‘Interaction of DDT and the Gastro-intestinal Microflora of the Rat’, J. Agric. Fd Chem., 16 (1968), pp. 451–453.

    Article  Google Scholar 

  380. F. Matsumura, K.C. Patil and G.M. Boush, ‘Formation of Photodieldrin by Microorganisms’, Science, 170 (1970), pp. 1206–1207.

    Article  Google Scholar 

  381. J.D. Rosen, D.J. Sutherland and G.R. Lipton, ‘The Photochemical Isomerization of Dieldrin and Endrin and Effects on Toxicity’, Bull Environ. Contam. Toxicol, 1 (1966), pp. 133–140.

    Article  Google Scholar 

  382. N.K. Van Allen and T. Kosuge, ‘Microbial Metabolism of the Fungicide 2,6-dichloro-4-nitroaniline’ J. Agric. Fd Chem., 22 (1974), pp. 221–224.

    Article  Google Scholar 

  383. J.L. Emmerson and R.C. Anderson, ‘Metabolism of Trifluralin in the Rat and Dog’, Toxicol Appl Pharmacol, 9 (1966), pp. 84–97.

    Article  Google Scholar 

  384. M.K. Ahmed, J.E. Casida and R.E. Nichols, ‘Animal Metabolism of Insecticides Bovine Metabolism of Organophosphorus Insecticides: Significance of Rumen Fluid with Particular Reference to Parathion’, J. Agric. Fd Chem., 6 (1958), pp. 740–746.

    Article  Google Scholar 

  385. J.W. Daniel and J.C. Gage, ‘Absorption and Excretion of Diquat and Paraquat in Rats’, Br. J. Ind. Med., 23 (1966), pp. 133–136.

    Google Scholar 

  386. I.R. Rowland, P. Grasso and M.J. Davies, ‘The Methylation of Mercuric Chloride by Human Intestinal Bacteria’, Experientia, 31 (1975), p. 1064.

    Article  Google Scholar 

  387. T. Edwards and G.C. McBride, ‘Biosynthesis and Degradation of Methyl-mercury in Human Faeces’, Nature, 253 (1975), pp. 462–464.

    Article  Google Scholar 

  388. M. Abdulla, B. Arnesjo and I. Ihse, ‘Methylation of Inorganic Mercury in Experimental Jejunal Blind-loop’, Scand. J. Gastroenterol, 8 (1973), pp. 565–567.

    Google Scholar 

  389. I.R. Rowland and M.J. Davies, In Vitro Metabolism of Inorganic Arsenic by the Gastro-Intestinal Microflora of the Rat’, J. Appl Toxicol, 1 (1981), pp. 278–283.

    Article  Google Scholar 

  390. I.R. Rowland, M.J. Davies and P. Grasso, ‘Metabolism of Methylmercuric Chloride by the Gastrointestinal Flora of the Rat’, Xenobiotica, 8 (1978), pp. 37–43.

    Article  Google Scholar 

  391. I.R. Rowland, M.J. Davies and P. Grasso, ‘Volatilisation of Methyl-mercuric Chloride by Hydrogen Sulphide’, Nature, Lond., 265 (1977), pp. 718–719.

    Article  Google Scholar 

  392. P.J. Craig and P.D. Bartlett, ‘The Role of Hydrogen Sulphide in Environ¬mental Transport of Mercury’, Nature, Lond., 275 (1978), pp. 635–637.

    Article  Google Scholar 

  393. J.P. Moody and R.T. Williams, ‘The Fate of Arsanilic Acid and Acetyl– arsanilic Acid in Hens’, Fd Cosmet. Toxicol, 2 (1964), pp. 687–693.

    Article  Google Scholar 

  394. J.P. Moody and R.T. Williams, ‘The Metabolism of 4-Hydroxy-3-Nitro-phenylarsonic Acid in Hens’, Fd Cosmet. Toxicol., 2 (1964), pp. 707–715.

    Article  Google Scholar 

  395. J. Autian, ‘Toxicity and Health Threats of Phthalate Esters: Review of the Literature’, Envir. Hlth Perspec., 4 (1978), pp. 3–26.

    Article  Google Scholar 

  396. L.G. Krauskopf, ‘Studies on the Toxicity of Phthalates via Ingestion’, Envir. Hlth Perspect., 3 (1973), pp. 61–72.

    Article  Google Scholar 

  397. S.I. Shibko and H. Blumenthal, Toxicology of Phthalic Acid Esters Used in Food Packaging Material’, Envir. Hlth Perspec., 3 (1973), pp. 131–138.

    Article  Google Scholar 

  398. D. Brown, K.R. Butterworth, P. Grasso and S.D. Gangolli, ‘Short-term Oral Toxicity Study of Diethyl Phthalate in the Rat’, Fd Cosmet. Toxicol, 16 (1978), pp. 415–422.

    Article  Google Scholar 

  399. C.P. Carpenter, C.S. Weil and H.F. Smith, ‘Chronic Oral Toxicity of Di-(2-ethylhexyl)-Phthalate for Rats, Guinea Pigs and Dogs’, Arch. ind. Hyg. 8 (1953), pp. 219–226.

    Google Scholar 

  400. B.G. Lake, S.D. Gangolli, P. Grasso and A.G. Lloyd, ‘Studies on the Hepatic Effects of Orally Administered Di-(2-ethylhexyl)phthalate in the Rat’, Toxicol. Appl. Pharmacol 32 (1975), pp. 355–367.

    Article  Google Scholar 

  401. B.R. Cater, M.W. Cook and S.D. Gangolli, ‘Zinc Metabolism and Dibutyl Phthalate Induced Testicular Atrophy in the Rat’, Biochem. Soc. Trans., 4 (1976), pp. 652–653.

    Google Scholar 

  402. T.J.B. Gray, K.R. Butterworth, I.F. Gaunt, P. Grasso and S.D. Gangolli, ‘Short-term Toxicity Study of Di-(2-ethylhexyl)phthalate in Rats’, Fd Cosmet. Toxicol, 15 (1977), pp. 389–399.

    Article  Google Scholar 

  403. P.W. Albro, R. Thomas and L. Fishbein, ‘Metabolism of Diethylhexyl Phthalate by Rats. Isolation and Characterization of the Urinary Metabolites’, J. Chromatog., 76 (1973), pp. 321–330.

    Article  Google Scholar 

  404. P.W. Albro and Moore, ‘Identification of the Metabolites of Simple Phthalate Diesters in Rat Urine’, J. Chromatog., 94 (1974), pp. 209–218.

    Article  Google Scholar 

  405. 405.1.R. Rowland, R.C. Cottrell and J.C. Phillips, ‘Hydrolysis of Phthalate Esters by the Gastrointestinal Contents of the Rat’, Fd Cosmet. Toxicol, 15 (1977), pp. 17–21.

    Article  Google Scholar 

  406. B.G. Lake, J.C. Phillips, J.C. Linnell and S.D. Gangolli, ‘The In Vitro Hydrolysis of Some Phthalate Diesters by Hepatic and Intestinal Preparations from Various Species’, Toxicol, appl Pharmacol, 39 (1977), pp. 239–248.

    Article  Google Scholar 

  407. P.W. Albro and R.O. Thomas, ‘Enzymatic Hydrolysis of Di-(2-ethylhexyl)phthalate by Lipases’, Biochim. Biophys. Acta, 306 (1973), pp. 380–390.

    Article  Google Scholar 

  408. J.W. Daniel and H. Bratt, ‘The Absorption, Metabolism and Tissue Distribution of Di-(2-ethylhexyl)phthalate in Rats’, Toxicology, 2 (1974), pp. 51–65.

    Article  Google Scholar 

  409. R. Walker, ‘Naturally Occurring Nitrate/Nitrite in Foods’, J. Sci. Fd Agric., 26 (1975), pp. 1735–1742.

    Article  Google Scholar 

  410. P.F. Swann, ‘The Toxicology of Nitrate, Nitrite and N-nitroso Compounds’, J. Sci. Fd Agric., 26 (1975), pp. 1761–1770.

    Article  Google Scholar 

  411. World Health Organisation, Environmental Health Criteria V. Nitrates, Nitrites and N-Nitroso Compounds ( WHO, Geneva, 1977 ).

    Google Scholar 

  412. World Health Organisation, International Drinking Water Standards, 3rd edn ( WHO, Geneva, 1971 ).

    Google Scholar 

  413. Z. Knotek and P. Schmidt, ‘Pathogenesis, Incidence and Possibilities of Preventing Alimentary Nitrate Methaemoglobinaemia in Infants’, Pediatrics, 34 (1964), p. 78.

    Google Scholar 

  414. J. Varady and G. Szanto, ‘Untersuchunger ubex den Nitritgehalt des Speichels, des Magensafts und des Hams’, Klin. Wschr., 19 (1940), p. 200.

    Article  Google Scholar 

  415. P.W. Goaz, H.A. Biswell and M.C. Miller, ‘On the Addition of a Variable to a Previously Optimized System for the Measurement of Nitrate-Nitrite Reductase Activity in Salivary Sediment’, J. Dent. Res., 43 (1964), p. 380.

    Article  Google Scholar 

  416. H.-J. Kuhn, ‘Untersuchung über den Nitritgehalt in Speichel, in Abhängigkeit von Zahnzustand und Zahnpflege’, Thesis, Medical Faculty; University of Heidelberg, 1964.

    Google Scholar 

  417. S.R. Tannenbaum, A.J. Sinskey, M. Weisman and W. Bishop, ‘Nitrite in Human Saliva. Its Possible Relation to Nitrosamine Formation’, J. Natl Cancer Inst., 53 (1974), pp. 79–84.

    Google Scholar 

  418. S.R. Tannenbaum, M. Weisman and D. Fett, ‘The Effect of Nitrate Intake On Nitrite Formation in Human Saliva’, Fd Cosmet. Toxicol, 14 (1976), pp. 549–552.

    Article  Google Scholar 

  419. B. Spiegelhalder, G. Eisenbrand and R. Preussman, ‘Influence of Dietary Nitrate on Nitrite Content of Human Saliva: Possible Relevance to In Vivo Formation of N–nitroso Compounds’, Fd Cosmet. Toxicol, 14 (1976), pp. 545–548.

    Article  Google Scholar 

  420. M. Harada, H. Ishiwata, Y. Nakamura, A. Tanimura and M. Ishidate, ‘Studies on In Vivo Formation of Nitro so Compounds. I. Changes of Nitrite and Nitrate Concentration in Human Saliva After Ingestion of Salted Chinese Cabbage’, J. FdHyg. Soc. Japan, 16 (1975), p. 11.

    Article  Google Scholar 

  421. H. Ishiwata, P. Boriboon, Y. Nakamura, M. Harads, A. Tanimura and M. Ishidate, ‘Studies on In Vivo Formation of Nitroso Compounds. II. Changes of Nitrite and Nitrate Concentrations in Human Saliva After Ingestion of Vegetables or Sodium Nitrate’, J. Fd Hyg. Soc. Japan, 16 (1975), p. 19.

    Article  Google Scholar 

  422. D. Klein, N. Gaconnet, B. Poullain and G. Debry, ‘Effet d’une charge en Nitrate sur le Nitrite Salivaire et Gastrique Chez l’Homme’, Fd Cosmet. Toxicol, 16 (1978), pp. 111–115.

    Article  Google Scholar 

  423. C.L. Walters, C.S. Dyke, M.J. Saxby and R. Walker, ‘Nitrosation of Food Amines Under Stomach Conditions’ in E.A. Walker, P. Bogovski and L. Gricuite (eds.), Environmental Nnitroso Compounds — Analysis and Formation, IARC Scient, Publ. No. 14, ( IARC, Lyon, France, 1976 ), p. 181.

    Google Scholar 

  424. C.L. Walters, F.P.A. Carr, C.S. Dyke, M.J. Saxby, P.L.R. Smith and R. Walker, ‘Nitrite Sources and Nitrosamine Formation In Vitro and In Vivo’ Fd Cosmet. Toxicol 17 (1979), pp. 473–479.

    Article  Google Scholar 

  425. J.W. White, ‘Relative Significance of Dietary Sources of Nitrate and Nitrite’, J. Agric. Fd Chem., 23 (1975), pp. 886–891.

    Article  Google Scholar 

  426. S.S. Mirvish, ‘Kinetics of N-nitrosation Reactions in Relation to Tumori-genesis Experiments with Nitrite plus Amines or Ureas’ in N-nitroso Compounds — Analysis and Formation. IARC Scient. Publ. No. 3 ( IARC, Lyon, France, 1972 ), pp. 104–108.

    Google Scholar 

  427. P.A.S. Smith and R.N. Loeppky, ‘Nitrosative Cleavage of Tertiary Amines’ J. Am. Chem. Soc., 89 (1967),pp. 1147–1157.

    Article  Google Scholar 

  428. W. Lijinsky, E. Conrad and R. Van de Bogart, ‘Carcinogenic Nitrosamines Formed by Drug/Nitrite Interactions’, Nature, (Lond.), 239 (1972), pp. 165–167.

    Article  Google Scholar 

  429. W. Lijinsky, E. Conrad and R. Van de Bogart, ‘Formation of Carcinogenic Nitrosamines by Interaction of Drugs with Nitrite’ in N-nitroso Compounds — Analysis and Formation, IARC Scient. Publ No. 3 ( IARC, Lyon, France, 1972 ), pp. 130–133.

    Google Scholar 

  430. W. Lijinsky and M. Greenblatt, ‘Carcinogen Dimethylnitrosamine Produced In Vivo from Nitrite and Aminopyrine’, Nature, New Biology, 236 (1972), pp. 177–8.

    Article  Google Scholar 

  431. K.I. Hildrum, R.A. Scanlan and L.M. Libbey, ‘Identification of γ-Butenyl-(ß-propenyl) Nitrosamine, the Principal Volatile Nitrosamine Formed in the Nitrosation of Spermidine or Spermine’, J. Agric. Fd Chem., 23 (1975), pp. 34–37.

    Article  Google Scholar 

  432. E. Boyland and S.A. Walker, ‘Effect of Thiocyanate on Nitrosation of Amines’, Nature (Lond.), 248 (1974), pp. 601–2.

    Article  Google Scholar 

  433. D. Lathia and M. Brendebach, ‘Influence of Thiocyanate Ions on Starch-Iodine Reaction Used for Estimation of α-amylase Activity’, Clin. Chim. Acta, 82 (1978), p. 209.

    Article  Google Scholar 

  434. B.C. Challis and C.D. Bartlett, ‘Possible Co-carcinogenic Effects of Coffee Constituents’, Nature (Lond.), 254 (1975), pp. 532–3.

    Article  Google Scholar 

  435. E.A. Walker, B. Pignatelli and M. Castegnaro, ‘Effects of Gallic Acid on Nitrosamine Formation’, Nature (Lond.), 258 (1975), p. 176.

    Article  Google Scholar 

  436. D. Lathia and U. Freutzen, ‘Synergistic Effects of Chlorogenic Acid and Thiocyanate on In Vitro Formation of N-me thy l-N-nitro so aniline under Physiological Conditions’, Fd Comet. Toxicol 18 (1980), pp. 463–465.

    Article  Google Scholar 

  437. J. Sander, F.U. Schweinsberg and H.P. Menz, ‘Untersuchungen über die Entstehung Cancerogener Nitrosamine im Magen’, Hoppe Seylers Z. Physiol. Chem., 349 (1968), pp. 1691–1697.

    Article  Google Scholar 

  438. N.P. Sen, D.C. Smith and L.A. Schwinghamer, ‘Formation of N-nitro-samines from Secondary Amines and Nitrite in Human and Animal Gastric Juice’, Fd Comet. Toxicol 7 (1969), pp. 301–307.

    Article  Google Scholar 

  439. C.L. Walters, B.E. Newton, D.V. Parke and R. Walker, ‘The Precursors of N-nitroso Compounds in Foods’, in N-nitroso Compounds in the Environment, IARCScient. Publ. No. 9, ( IARC, Lyon, France, 1974 ), p. 223.

    Google Scholar 

  440. J. La Bar and J. Sander, ‘Carcinogenic N-nitroso-dimethylamine from the Reaction of the Analgesic Amidopyrine and Nitrite Extracted from Foodstuffs’, Z. Krebsforsch., 84 (1975), pp. 299–310.

    Article  Google Scholar 

  441. J. Sander, ‘Nitrosaminsynthese Durch Bakterien’, Hoppe Seylers Z. Physiol. Chem., 349 (1968), pp. 429–432.

    Article  Google Scholar 

  442. W.S.J. Ruddell, E.S. Bone, M.J. Hill, L.M. Blendis and C.L. Walters, ‘Gastric-juice Nitrite. A Risk Factor for Cancer in the Hypochlorhydric Stomach?’, Lancet, ii (1976), p. 1037.

    Google Scholar 

  443. M.J. Hill, ‘Bacterial Metabolism and Human Carcinogenesis’, Br. Med. Bull, 36 (1980), pp. 89–94.

    Google Scholar 

  444. H. Druckrey, D. Steinhoff, H. Beuthner, H. Schneider and P. Klaerner, ‘Screening of Nitrite for Chronic Toxicity in Rats’, Arzneimittel-Forsch., 13 (1963), pp. 320–323.

    Google Scholar 

  445. M.A. Friedman and H. McClanahan, ‘Biosynthesis of Nitrosamines: Reaction of Sodium Nitrite with Dimethylglycine Produces Nitro so sarco sine’, Proc. Am. Assoc. Cancer Res., 14 (1973), p. 127.

    Google Scholar 

  446. J. Sander, F.U. Schweinsberg, M. Ladenstein, H. Benzing and S.H. Wahl, ‘Messung der Renalen Nitrosaminausscheidung am Hund zum Nachweis Einer Nitrosaminbildung In Vivo’ Hoppe Seylers Z. Physiol. Chem., 354 (1973), pp. 384–390.

    Article  Google Scholar 

  447. B.S. Alam, I.B. Saporoschetz and S.S. Epstein, ‘Formation of N-nitro-sopiperidine from Piperidine and Sodium Nitrite in the Stomach and the Isolated Intestinal Loop of the Rat’, Nature (Lond.), 232 (1971), pp. 116–8.

    Article  Google Scholar 

  448. B.S. Alam, I.B. Saporoschetz and S.S. Epstein, ‘Synthesis of Nitroso-piperidine from Nitrate and Piperidine in the Gastro-intestinal Tract of the Rat’, Nature (Lond.), 232 (1971), pp. 199–200.

    Article  Google Scholar 

  449. M. Greenblatt, V.R.C. Kommineni, E. Conrad, L. Wallcave and W. Lijinsky, In Vivo Conversion of Phenmetrazine into its N–nitroso Derivative’, Nature New Biology, 236 (1972), pp. 25–6.

    Article  Google Scholar 

  450. J. Sander and F. Seif, ‘Bakterielle Reduktion von Nitrat im Magen des Menschen als Ursache einer Nitro samin-Bildung’, Arzneimittel-Forsch., 19 (1969), pp. 1091–1093.

    Google Scholar 

  451. J. Wang, T. Kakizoe, P. Dion, R. Furrer, A.J. Varghese and W.R. Bruce, ‘Volatile Nitrosamines in Normal Human Faeces’, Nature (Lond.), 276 (1978), pp. 280–1.

    Article  Google Scholar 

  452. D.H. Fine, R. Ross, D.P. Rounbehler, A. Silvergleid and L. Song, ‘Formation In Vivo of Volatile N–nitrosamines in Man After Ingestion of Cooked Bacon and Spinach’, Nature (Lond.), 265 (1977), pp. 753–755.

    Article  Google Scholar 

  453. M. Yamamoto, T. Yamada and A. Tanimura, ‘Volatile Nitrosamines in Human Blood Before and After Ingestion of a Meal Containing High Concentrations of Nitrate and Secondary Amines’, Fd Cosmet. Toxicol, 18 (1980), pp. 297–299.

    Article  Google Scholar 

  454. J. Sander and G. Bürkle, ‘Induktion maligner Tumoren bei Ratten Durch Gleichzeitige Verfütterung von Nitrit und Seckundären Aminen’, Z. Krebs forsch., 73 (1969), p. 54.

    Article  Google Scholar 

  455. W. Lijinsky, H.W. Taylor, C. Snyder and P. Nettesheim, ‘Malignant Tumours of Liver and Lung in Rats Fed Aminopyrine or Heptamethyleneimine Together with Nitrite’, Nature, Lond., 244 (1973), p. 176.

    Article  Google Scholar 

  456. R.C. Shank and P.M. Newberne, ‘Dose Response Study of the Carcinogenicity of Dietary Sodium Nitrite and Morpholine in Rats and Hamsters’, Fd Cosmet. Toxicol., 14 (1976), pp. 1–8.

    Article  Google Scholar 

  457. M. Greenblatt, S. Mirvish and B.T. So, ‘Nitroamine Studies: Induction of Lung Adenomas by Concurrent Administration of Sodium Nitrite and Secondary Amines in Swiss Mice’, J. Natn. Cancer Inst., 46 (1971), p. 1029.

    Google Scholar 

  458. M.J. Hill, G. Hawksworth and G. Tattersall, ‘Bacteria, nitrosamines and Cancer of the Stomach’, Br. J. Cancer, 28 (1978), p. 562.

    Article  Google Scholar 

  459. Joint FAO/WHO Expert Committee on Food Additives — Fifteenth Report, ‘Evaluation of Food Additives. Some Enzymes, Modified Starches and Certain other Substances: Toxicological Evaluations and Specifications and a Review of the Technological Efficacy of some Antioxidants’, Tech. Rep. Ser. Wld Hlth Org., 488 (1972).

    Google Scholar 

  460. T.B. Morgan and J. Yudkin, ‘The Vitamin-sparing Action of Sorbitol’, Nature, Lond., 180 (1957), p. 543.

    Article  Google Scholar 

  461. N. Hosoya, ‘Effect of Sugar Alcohol on the Intestine’, IXth Interational Congress of Nutrition, Mexico City, 1972.

    Google Scholar 

  462. I.F. Gaunt, A.G. Lloyd, P. Grasso, S.D. Gangolli and K.R. Butterworth, ‘Short-term Study in the Rat on Two Caramels Produced by Variations of the ‘Ammonia Process’, Fd Cosmet. Toxicol., 15 (1977), pp. 509–521.

    Article  Google Scholar 

  463. I.F. Gaunt, F.M.B. Carpanini, I.S. Kiss and P. Grasso, ‘Short-term Toxicity of Yellow 2G in Rats’, Fd Cosmet. Toxicol., 9 (1971), p. 343.

    Article  Google Scholar 

  464. I.R. Rowland, A.K. Mallett and A. Wise, ‘A Comparison of the Activity of Five Microbial Enzymes in Cecal Content from Rats, Mice, and Hamsters, and Response to Dietary Pectin’, Toxicol. Appl. Pharmacol, 69 (1983), pp. 143–148.

    Article  Google Scholar 

  465. K. Loeschke, E. Uhlich and R. Halbach, ‘Caecal Enlargement Combined with Sodium Transport Stimulation in Rats Fed Polyethylene Glycol’, Proc. Soc. exp. Biol. Med., 142 (1973), pp. 96–102.

    Google Scholar 

  466. J.F. Moinuddin and H.W.T. Lee, ‘Alimentary, Blood and Other Changes due to Feeding MnSO4, MgSO4 and Na2SO4’, Am. Physiol, 199 (1960), pp. 77–83.

    Google Scholar 

  467. L.J. Filer, ‘Modified Food Starches for Use in Infant Foods’, Nutr. Rev., 29 (1971), pp. 55–59.

    Article  Google Scholar 

  468. R. Walker, ‘Some Observations on the Phenomenon of Caecal Enlargement in the Rat’ in C.L. Galli, R. Paoletti and G. Vettorazzi (eds.), Chemical Toxicology of Food ( Elsevier/North Holland, Amsterdam, 1978 ), pp. 339–348.

    Google Scholar 

  469. R. Walker and E.A. El Harith, ‘Nutritional and Toxicological Properties of Some Raw and Modified Starches’, Ann. Nutr. Alim., 32 (1978), pp. 671–679.

    Google Scholar 

  470. D.C. Leegwater, A.P. de Groot and M. van Kalmthout-Kuyper, ‘The Aetiology of Caecal Enlargement in the Rat’, Fd Cosmet. Toxicol., 12 (1974), pp. 687–697.

    Article  Google Scholar 

  471. E.A. El Harith, J.W.T. Dickerson and R. Walker, ‘Potato Starch and Caecal Hypertrophy in the Rat’, Fd Cosmet. Toxicol 14 (1976), pp. 115–121.

    Article  Google Scholar 

  472. Anon, ‘Recent Development in the Sulphite Field’, Fd Cosmet. Toxicol., 4 (1966), pp. 187–189.

    Google Scholar 

  473. H.P. Til, V. J. Feron and A.P. de Groot, ‘Toxicity of Sulphite. I. Long-term Feeding and Multigeneration Studies in Rats’, Fd Cosmet. Toxicol., 10 (1972), pp. 291–310.

    Article  Google Scholar 

  474. H.P. Til, V.J. Feron, A.P. de Groot and P. Van der Wal, ‘Toxicity of Sulphite. II. Short-and Long-term Studies in Pigs’, Fd Cosmet Toxicol., 10 (1972), pp. 463–473.

    Article  Google Scholar 

  475. V.J. Feron and P. Wensvoort, ‘Gastric Lesions in Rats after the Feeding of Sulphite’, Pathol. Eur., 7 (1972),pp. 103–111.

    Google Scholar 

  476. M. Glicksman, Gum Technology in the Food Industry ( Academic Press, London, 1969 ), p. 214.

    Google Scholar 

  477. S. Bonflls, ‘Carrageenan and the Human Gut’, Lancet, ii (1970), p. 414.

    Google Scholar 

  478. P. Grasso, M. Sharratt, F.M.B. Carpanini and S.D. Gangolli, ‘Studies on Carrageenan and Large Bowel Ulceration in Mammals’, Fd Cosmet. Toxicol., 11 (1973), p. 555.

    Article  Google Scholar 

  479. M. Sharratt, P. Grasso, F.M.B. Carpanini and S.D. Gangolli, Lancet, ii (1970), p. 932.

    Google Scholar 

  480. P. Grasso, S.D. Gangolli, K.R. Butterworth and M.G. Wright, ‘Studies on Degraded Carrageenan in Rats and Guinea Pigs’, Fd Cosmet. Toxicol, 13 (1975), pp. 195–201.

    Article  Google Scholar 

  481. K.A. Pittman, L. Golberg and F. Coulston, ‘Carrageenans: the Effect of Molecular Weight and Polymer Type on its Uptake, Excretion and Degradation in Animals’, Fd Cosmet. Toxicol, 14 (1976), pp. 85–93.

    Article  Google Scholar 

  482. J. Watt and R. Marcus, ‘Ulcerative Colitis in Rabbits Fed Degraded Carrageenan’, J. Pharm. Pharmacol, 22 (1979), p. 130.

    Article  Google Scholar 

  483. J. Watt and R. Marcus, ‘Carrageenan–induced Ulceration of the Large Intestine in the Guinea Pig’, Gut, 12 (1971), pp. 164–171.

    Article  Google Scholar 

  484. J. Watt and R. Marcus, ‘Ulcerative Colitis in the Guinea Pig Caused by Seaweed Extract’, J. Pharm. Pharmacol, 21 (1969), pp. 1875–1885.

    Article  Google Scholar 

  485. P. Abraham, R.J. Fabian, L. Golberg and F. Coulston, ‘Role of Lysosomes in Carrageenan Induced Caecal Ulceration’, Gastroenterology, 67 (1974), pp. 1169–1181.

    Google Scholar 

  486. A.B. Onderdonk and J.G. Bartlett, ‘Bacteriological Studies of Experimental Ulcerative Colitis’, Am. J. Gin. Nutr., 32 (1978), pp. 258–265.

    Google Scholar 

  487. Anon, ‘Carrageenan Under Scrutiny’, BIBRA Bulletin, 13 (1974), pp. 132–134.

    Google Scholar 

  488. M.S. Losowki and B.E. Walker, ‘Liver Disease and Malabsorption’, Gastroenterology, 56 (1969), pp. 589–600.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 D.M. Conning and A.B.G. Lansdown Croom Helm Ltd

About this chapter

Cite this chapter

Rowland, I.R., Walker, R. (1983). The Gastrointestinal Tract in Food Toxicology. In: Toxic Hazards in Food. Croom Helm Applied Biology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9769-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9769-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9771-1

  • Online ISBN: 978-1-4615-9769-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics