Skip to main content

Cytoplasmic Streaming in Characean Algae: Mechanism, Regulation by Ca2+, and Organization

  • Chapter
Algal Cell Motility

Part of the book series: Current Phycology ((CP))

Abstract

The endoplasm of the internodal cells of the characean algae streams at more than 50 μm s−1. The giant size and simple organization of these cells have for over 200 years made them favorite objects for studying motility by microscopy and ingenious experimentation (reviewed by Kamiya 1959, 1960, 1962, 1981). Studies over the last 25 years have identified the structures causing streaming and some of the proteins that they contain and have begun to elucidate their function, organization, and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R. J., and Pollard, T. D. 1986. Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-1. Nature (Lond.) 322: 754–756.

    Article  Google Scholar 

  • Adams, R. J. and Pollard, T. D. 1989. Binding of myosin I to membrane lipids. Nature (Lond.) 340: 565–568.

    Article  Google Scholar 

  • Albanesi, J. P., Fujisaki, H., Hammer III, J. A., Korn, E. D., Jones, R., and Sheetz, M. P. 1985. Monomeric Acanthamoeba myosins I support movement in vitro. J. Biol. Cbem. 260: 8649–8652.

    Google Scholar 

  • Allen, N. S. 1984. Endoplasmic filaments generate the motive force for rotational streaming in Nitella. J. Cell Biol. 63: 270–287.

    Article  Google Scholar 

  • Barry, W. H. 1969. Coupling of excitation and cessation of cyclosis in Nitella: Role of divalent cations. J. Cell Physiol. 72: 153–160.

    Article  Google Scholar 

  • Bradley, M. O. 1973. Microfilaments and cytoplasmic streaming: inhibition of streaming by cytochalasin. J. Cell. Sci. 12: 327–343.

    Google Scholar 

  • Chen, J. C. W. 1983. Effect of elevated centrifugal field on the Nitella cell and postcentrifugation patterns of its cytoplasmic streaming and chloroplast files. Cell Struct. Funct. 8: 109–118.

    Article  Google Scholar 

  • Chen, J. C. W., and Kamiya, N. 1975. Localization of myosin in the internodal cell of Nitella as suggested by differential treatment with N-ethylmaleimide. Cell Struct. Funct. 1: 1–9.

    Article  Google Scholar 

  • Dabora, S. L., and Sheetz, M. P. 1988. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54: 27–35.

    Article  Google Scholar 

  • Green, P. B. 1954. The spiral growth pattern of the cell wall in Nitella axillaris. Am J. Bot. 41: 403–409.

    Article  Google Scholar 

  • Green, P. B. 1963. On mechanisms of cellular elongation. In M. Locke, ed., Cytodiferentiation and Macromolecular Synthesis. Academic Press, New York, pp. 203–234.

    Google Scholar 

  • Green, P. B. 1964. Cinematic observations on the growth and division of chloroplasts in Nitella. Am. J. Bot. 51: 334–342.

    Article  Google Scholar 

  • Green, P. B., Erickson, R. O., and Richmond, P. A. 1970. On the physical basis of cell morphogenesis. Ann. N.Y. Acad. Sci. 175: 712–731.

    Article  Google Scholar 

  • Grolig, F., Williamson, R. E., Parke, J., Miller, C., and Anderton, B. H. 1988. Myosin and Ca2+-sensitive streaming in the alga Chara: two polypeptides reacting with a monoclonal anti-myosin and their localization in the streaming endoplasm. Eur. J. Cell Biol. 47: 22–31.

    Google Scholar 

  • Harmon, A. C., and McCurdy, D. W. (1990). Calcium-dependent protein kinase and its possible role in the regulation of the cytoskeleton. Current Topics in Plant Biochemistry and Physiology 9: 119–128.

    Google Scholar 

  • Harmon, A. C., Putnam-Evans, C., and Cormier, M. J. 1987. A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol. (Bethesda) 83: 830–837.

    Article  Google Scholar 

  • Hayama, T., and Tazawa, M. (1980). Ca2+ reversibly inhibits active rotation of chloroplasts in isolated cytoplasmic droplets of Chara. Protoplasma 102: 1–9.

    Article  Google Scholar 

  • Hayama, T., Shimmen, T., and Tazawa, M. 1979. Participation of Ca2+ in cessation of cytoplasmic streaming induced by membrane excitation in Characeae internodal cells. Protoplasma 99: 305–321.

    Article  Google Scholar 

  • Hayashi, T. 1964. The role of the cortical gel layer in cytoplasmic streaming. In R. D. Allen and N. Kamiya, ed., Primitive Motile Systems in Cell Biology. Academic Press, New York, pp. 19–29.

    Google Scholar 

  • Higashi-Fujime, S. 1980. Active movement in vitro of microfilaments isolated from Nitella cell. J. Cell Biol. 87: 569–578.

    Article  Google Scholar 

  • Hope, A. B., and Walker, N. A. (1975). The Physiology of Giant Algal Cells. Cambridge University Press, London, 201 pp.

    Google Scholar 

  • Huxley, H. E. (1963). Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol. 7: 281–308.

    Article  Google Scholar 

  • Jablonsky, P. P., Hagan, R. P., Grolig, F., and Williamson, R. E. 1990. Immunolocalization of Chara calmodulin and the reversibility of the inhibition of cytoplasmic streaming by Ca2+. In Calcium in Plant Growth and Development, 13th Annual Symposium in Plant Physiology, American Society of Plant Physiology, pp. 79–85.

    Google Scholar 

  • Jarosch, R. 1956. Plasmastromung und Chloroplastenrotation bei Characeen. Phyton (B. Aires) 8: 87–107.

    Google Scholar 

  • Kachar, B. 1985. Direct visualization of organelle movement along actin filaments dissociated from characean algae. Science 227: 1355–1357.

    Article  Google Scholar 

  • Kachar, B., and Reese, T. S. 1988. The mechanism of cytoplasmic streaming in characean algal cells: Sliding of endoplasmic reticulum along actin filaments. J. Cell Biol. 106: 1545–1552.

    Article  Google Scholar 

  • Kamitsubo, E. 1966. Motile protoplasmic fibrils in cells of Characeae. II. Linear fibrillar structure and its bearing on protoplasmic streaming. Proc. Jpn. Acad. 42: 640–643.

    Google Scholar 

  • Kamitsubo, E. 1972a. Motile protoplasmic fibrils in cells of the Characeae. Protoplasma 74: 53–70.

    Article  Google Scholar 

  • Kamitsubo, E. 1972b. A “window technique” for detailed observation of cytoplasmic streaming. Exp. Cell Res. 74: 613–616.

    Article  Google Scholar 

  • Kamitsubo, E., Ohashi, Y. & Kikuyama, M. 1989. Cytoplasmic streaming in internodal cells of Nitella under centrifugal acceleration: A study done with a newly constructed centrifuge microscope. Protoplasma 152: 148–155.

    Article  Google Scholar 

  • Kamiya, N. 1959. Protoplasmic streaming. In L. V. Heilbrunn and F. Weber (ed.), Protoplasmatologia, Vol. VIII/3a. Springer-Verlag, Vienna, 199 pp.

    Google Scholar 

  • Kamiya, N. 1960. Physics and chemistry of protoplasmic streaming. Annu. Rev. Plant Physiol. 11: 323–340.

    Article  Google Scholar 

  • Kamiya, N. 1962. Protoplasmic streaming. In W. Ruhland (ed.), Encyclopaedia of Plant Physiology. Vol. 17/2. Springer-Verlag, Berlin, pp. 979–1035.

    Google Scholar 

  • Kamiya, N. 1981. The physical and chemical basis of cytoplasmic streaming. Annu. Rev. Plant Physiol. 32: 205–236.

    Article  Google Scholar 

  • Kamiya, N. 1986. Cytoplasmic streaming in giant algal cells: A historical survey of experimental approaches. Bot. Mag. Tokyo 99: 441–467.

    Article  Google Scholar 

  • Kamiya, N., and Kuroda, K. 1956. Velocity distribution of the protoplasmic streaming in Nitella cells. Bot. Mag. Tokyo 69: 544–554.

    Google Scholar 

  • Kamiya, N., and Kuroda, K. 1958. Measurement of the motive force of the protoplasmic rotation in Nitella. Protoplasma 50: 144–148.

    Article  Google Scholar 

  • Kamiya, R., and Nagai, R. 1982. Structural similarity between actin bundles from characean algal cells and sea urchin oocytes. J. Mol. Biol. 155: 169–172.

    Article  Google Scholar 

  • Kamiya, N., and Tazawa, M. 1966. Surgical operations on characean cells with special reference to cytoplasmic streaming. Annual Report Faculty of Science, Osaka University 14: 1–37.

    Google Scholar 

  • Kato, T., and Tonomura, Y. 1977. Identification of myosin in Nitella flexilis. J. Biochem. (Tokyo) 82: 777–782.

    Google Scholar 

  • Kersey, Y. M., Hepler, P. K., Palevitz, B. A., & Wessels, N. K. 1976. Polarity of actin filaments in characean algae. Proc. Natl. Acad. Sci. USA 73: 165–167.

    Article  Google Scholar 

  • Kikuyama, M., and Tazawa, M. 1982. Ca2+ ion reversibly inhibits the cytoplasmic streaming of Nitella. Protoplasma 113: 241–243.

    Article  Google Scholar 

  • Kikuyama, M., and Tazawa, M. 1983. Transient increase of intracellular Ca2+ during excitation of tonoplast-free Chara cells. Protoplasma 117: 62–67.

    Article  Google Scholar 

  • Kohama, K., and Shimmen, T. 1985. Inhibitory Ca2+-control of movement of beads coated with Physarum myosin along actin cables in Chara internodal cells. Protoplasma 129: 88–91.

    Article  Google Scholar 

  • Kohno, T., and Shimmen, T. 1988. Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2+. J. Cell Biol. 106: 1539–1543.

    Article  Google Scholar 

  • Korn, E. D., and Hammer III, J. A. 1988. Myosins of non-muscle cells. Ann. Rev. Biophys. Biophys. Chem. 17: 23–45.

    Article  Google Scholar 

  • Kron, S. J., and Spudich, J. A. 1986. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl. Acad. Sci. USA 83: 6272–6276.

    Article  Google Scholar 

  • Kuroda, K. 1983. Cytoplasmic streaming in characean cells cut open by microsurgery. Proc. Jpn. Acad. Ser. B 59: 126–130.

    Google Scholar 

  • Kuroda, K., and Kamiya, N. 1975. Active movement of Nitella chloroplast in vitro. Proc. Jpn. Acad. Ser. B 51: 774–777.

    Google Scholar 

  • Kuroda, K., and Kamiya, N. 1981. Behaviour of cytoplasmic streaming in Nitella during centrifugation as revealed by the television centrifuge-microscope. Biorheology 18: 633–641.

    Google Scholar 

  • Kuznicki, J. 1986. Phosphorylation of myosin in non-muscle and smooth muscle cells. FEBS Lett. 204: 169–176.

    Article  Google Scholar 

  • MacLean-Fletcher, S., and Pollard, T. 1980. Mechanism of action of cytochalasin B on actin. Cell 20: 329–341.

    Article  Google Scholar 

  • McLean, B., and Juniper, B. E. 1988. Fine structure of Chara actin bundles, using rapid freezing and deep etching. Cell Biol. Int. Rep. 12: 509–517.

    Article  Google Scholar 

  • Mooseker, M. S., and Coleman, T. R. 1989. The 110-kD protein-calmodulin complex of the intestinal microvillus (brush border myosin I) is a mechanoenzyme. J. Cell Biol. 108: 2395–2400.

    Article  Google Scholar 

  • Nagai, R., and Hayama, T. 1979. Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara internodal cells. J. Cell Sci. 36: 121–136.

    Google Scholar 

  • Nagai, R, and Kamiya, N. 1977. Differential treatment of Chara cells with cytochalasin B with special reference to its effects on cytoplasmic streaming. Exp. Cell Res. 108: 231–237.

    Google Scholar 

  • Nagai, R., and Rebhun, L. I. 1966. Cytoplasmic microfilaments in streaming Nitella cells. J. Ultrastruct. Res. 14: 571–589.

    Article  Google Scholar 

  • Nothnagel, E. A., Barak, L. S., Sanger, J. W., and Webb, W. W. 1981. Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara. J. Cell Biol. 88: 364–372.

    Article  Google Scholar 

  • Nothnagel, E. A., and Webb, W. W. 1982. Hydrodynamic models of viscous coupling between motile myosin and endoplasm in characean algae. J. Cell Biol. 94: 444–454.

    Article  Google Scholar 

  • Owaribe, K., Izutsu, K., and Hatano, S. 1979. Cross-reactivity of antibody to Physarum actin and actins in eukaryotic cells examined by immunofluorescence. Cell Struct. Funct. 4: 117–126.

    Google Scholar 

  • Palevitz, B. A., Ash, J. F., and Hepler, P. K. 1974. Actin in the green algae, Nitella Proc. Natl. Acad. Sci. U.S.A. 71: 363–366.

    Article  Google Scholar 

  • Palevitz, B. A., and Hepler, P. K. 1975. Identification of actin in situ at the ectoplasm- endoplasm interface of Nitella. Microfilament-chloroplast association. J. Cell Biol. 65: 29–38.

    Article  Google Scholar 

  • Pickett-Heaps, J. D. 1967. Ultrastructure in Chara sp. I. Vegetative cells. Aust. J. Biol. Sci. 20: 539–551.

    Google Scholar 

  • Pickett-Heaps, J. D. 1975. Green Algae. Sinauer, Sunderland MA, 606 pp.

    Google Scholar 

  • Pollard, T. D., and Cooper, J. A. (1986). Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu. Rev. Biochem. 55: 987–1035.

    Article  Google Scholar 

  • Pollard, T. D., and Mooseker, M. S. 1981. Direct measurements of actin polymerization rate constants by electron microscopy. Filaments nucleated by isolated microvillus cores. J. Cell Biol. 88: 654–659.

    Article  Google Scholar 

  • Putnam-Evans, C., Harmon, A. C., and Cormier, M. J. 1990. Purification and characterization of a novel protein kinase from soybean. Biochemistry 29: 2488–2495.

    Article  Google Scholar 

  • Putnam-Evans, C., Harmon, A. C., Palevitz, B. A., Fechheimer, M., and Cormier, M. J. 1989. Calcium-dependent protein kinase is localized with F-actin in plant cells. Cell Motil. Cytoskel. 12: 12–22.

    Article  Google Scholar 

  • Sakano, K., and Tazawa, M. 1986. Tonoplast origin of the envelope membrane of cytoplasmic droplets prepared from Chara internodal cells. Protoplasma 131: 247–249.

    Article  Google Scholar 

  • Sheetz, M. P., and Spudich, J. A. 1983. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature (Lond.) 303: 31–35.

    Article  Google Scholar 

  • Shimmen, T. 1988. Characean actin bundles as a tool for studying actomyosin-based motility. Bot. Mag. Tokyo 101: 533–544.

    Article  Google Scholar 

  • Shimmen, T., and Tazawa, M. 1982. Reconstitution of cytoplasmic streaming in Characeae. Protoplasma 113: 127–131.

    Article  Google Scholar 

  • Shimmen, T., and Yano, M. 1984. Active sliding movement of latex beads coated with skeletal muscle myosin on Chara actin bundles. Protoplasma 121: 132–137.

    Article  Google Scholar 

  • Shimmen, T., and Yano, M. 1985. Ca2+ regulation of myosin sliding along Chara actin mediated by native tropomyosin. Proc. Jpn. Acad. Ser. B 61: 86–89.

    Article  Google Scholar 

  • Shimmen, T., and Yano, M. 1986. Regulation of myosin sliding along Chara actin bundles by native skeletal muscle tropomyosin. Protoplasma 132: 129–136.

    Article  Google Scholar 

  • Szent-Gyorgyi, A. G., Szentkiralyi, E. M., and Kendrick-Jones, J. 1973. The light chains of scallop myosin as regulatory subunits. J. Mol. Biol. 74: 179–203.

    Article  Google Scholar 

  • Taiz, L., Metraux, J.-P., and Richmond, P. A. 1981. Control of cell expansion in the Nitella internode. In O. Kiermayer (ed.), Cytomorphogenesis in plants. Springer- Verlag, Vienna, pp. 231–64.

    Chapter  Google Scholar 

  • Tazawa, M. 1964. Studies on Nitella having artificial cell sap. I. Replacement of the cell sap with artificial solutions. Plant Cell Physiol. 5: 33–43.

    Google Scholar 

  • Tazawa, M. 1968. Motive force of the cytoplasmic streaming in Nitella. Protoplasma 65: 207–222.

    Article  Google Scholar 

  • Tazawa, M., Kikuyama, M., and Shimmen, T. 1976. Electric characteristics and cytoplasmic streaming of Characeae cells lacking tonoplast. Cell Struct. Funct. 1: 165–176.

    Article  Google Scholar 

  • Tazawa, M., and Kishimoto, U. 1968. Cessation of cytoplasmic streaming of Chara internodes during action potential. Plant Cell Physiol. 9: 361–368.

    Google Scholar 

  • Tazawa, M., and Shimmen, T. 1987. Cell motility and ionic relations in characean cells as revealed by internal perfusion and cell models. Int. Rev. Cytol. 109: 259–312.

    Article  Google Scholar 

  • Tester, M. 1990. Plant ion channels: Whole-cell and single-channel studies. New Phytol. 114: 305–340.

    Article  Google Scholar 

  • Titus, M. A., Warrick, H. M., and Spudich, J. A. 1989. Multiple actin-based motor genes in Dictyostelium. Cell Regul. 1: 55–63.

    Google Scholar 

  • Tominaga, Y., Muto, S., Shimmen, T., and Tazawa, M. 1985. Calmodulin and Ca2+- controlled cytoplasmic streaming in characean cells. Cell Struct. Funct. 10: 315–325.

    Article  Google Scholar 

  • Tominaga, Y., Shimmen, T., and Tazawa, M. 1983. Control of cytoplasmic streaming by extracellular Ca2+ in permeabilized Nitella cells. Protoplasma 116: 75–77.

    Article  Google Scholar 

  • Tominaga, Y., Wayne, R., Tung, H. Y. L., and Tazawa, M. 1987. Phosphorylation- dephosphorylation is involved in Ca2+-controlled cytoplasmic streaming of characean cells. Protoplasma 136: 161–169.

    Article  Google Scholar 

  • Vale, R. D., Szent-Gyorgyi, A. G., and Sheetz, M. P. 1984. Movement of scallop myosin on Nitella actin filaments: Regulation by calcium. Proc. Natl. Acad. Sci. U.S.A. 81: 6775–6778.

    Article  Google Scholar 

  • Wasteneys, G. O. 1988. Microtubule organization in internodal cells of characean algae. Ph.D. Thesis, Australian National University, Canberra, 198 pp.

    Google Scholar 

  • Wasteneys, G. O., and Williamson, R. E. (1989). Reassembly of microtubules in Nitella tasmanica: Quantitative analysis of assembly and orientation. Eur.J. Cell Biol. 50: 76–83.

    Google Scholar 

  • Wessels, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M. 1971. Microfilaments in cellular and developmental processes. Science 171: 135–143.

    Article  Google Scholar 

  • Williamson, R. E. 1972. A light microscope study of the action of cytochalasin B on the cells and isolated cytoplasm of the Characeae. J. Cell Sci. 10: 811–819.

    Google Scholar 

  • Williamson, R. E. 1974. Actin in the alga, Chara corallina. Nature (Lond.) 248: 801–802.

    Article  Google Scholar 

  • Williamson, R. E. 1975. Cytoplasmic streaming in Chara: A cell model activated by ATP and inhibited by cytochalasin B. J. Cell Sci. 17: 655–668.

    Google Scholar 

  • Williamson, R. E. 1979. Filaments associated with the endoplasmic reticulum in the streaming cytoplasm of Chara corallina. Eur. J. Cell Biol. 20: 177–183.

    Google Scholar 

  • Williamson, R. E. 1985. Immobilisation of organelles and actin bundles in the cortical cytoplasm of the alga Chara corallina Klein ex. Wild. Planta (Berl.) 163: 1–8.

    Article  Google Scholar 

  • Williamson, R. E., and Ashley, C. C. 1982. Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature (Lond.) 296: 647–651.

    Article  Google Scholar 

  • Williamson, R. E., and Hurley, U. A. 1986. Growth and regrowth of actin bundles in Chara: bundle assembly by mechanisms differing in sensitivity to cytochalasin B. J. Cell Sci. 85: 21–32.

    Google Scholar 

  • Williamson, R. E., Hurley, U. A., and Perkin, J. L. 1986. Regeneration of actin bundles in Chara: polarized growth and orientation by endoplasmic flow. Eur. J. Cell Biol. 34: 221–228.

    Google Scholar 

  • Williamson, R. E., McCurdy, D. W., Hurley, U. A., and Perkin, J. L. 1987. Actin of Chara giant internodal cells. Plant Physiol. (Bethesda) 85: 268–72.

    Article  Google Scholar 

  • Williamson, R. E., Perkin, J. L., McCurdy, D. W., Craig, S., and Hurley, U. A. 1986. Production and use of monoclonal antibodies to study the cytoskeleton and other components of the cortical cytoplasm of Chara. Eur. J. Cell Biol. 41: 1–8.

    Google Scholar 

  • Williamson, R. E., and Toh, B. H. 1979. Motile models of plant cells and the immunofluorescent localization of actin in a motile Chara cell model. In S. Hatano, H. Ishikawa, and H. Sato (ed.), Cell Motility: Molecules and Organization. University of Tokyo Press, Tokyo, pp. 339–46.

    Google Scholar 

  • Yoneda, M., and Nagai, R. 1988. Structural basis of cytoplasmic streaming in characean internodal cells. A hydrodynamic analysis. Protoplasma 147: 64–76.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Routledge, Chapman & Hall, Inc.

About this chapter

Cite this chapter

Williamson, R.E. (1992). Cytoplasmic Streaming in Characean Algae: Mechanism, Regulation by Ca2+, and Organization. In: Melkonian, M. (eds) Algal Cell Motility. Current Phycology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9683-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9683-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9685-1

  • Online ISBN: 978-1-4615-9683-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics