Skip to main content

Adaptive Changes in Renal Cortical Brush Border Membrane

  • Chapter
Phosphate and Minerals in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 128))

Abstract

The kidney plays a key role in phosphorus (P)* homeostasis.1 The amount of phosphate (Pi) excreted by the kidney depends mostly on the extent to which Pi filtered in glomeruli is reabsorbed back to peritubular circulation in tubules.2 The bulk of the filtered Pi is reabsorbed in the proximal tubule2 and the first step in the mechanism of Pi transport from the lumen across the proximal tubule epithelium is a Na+-dependent Pi uptake across the luminal brush border membrane (BBM).3,4 Studies on 32Pi uptake by BBM vesicles isolated from the renal cortex allows analysis of this initial step in tubular Pi reabsorption in a variety of pathophysiologic situations, independent of immediate supply of energy from tubular cell metabolism and independent of other factors which could contribute to or regulate overall proximal tubular Pi reabsorption in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Kreusser and E. Ritz, The phosphate-depletion syndrome, Contr. Nephrol. 14:162 ( Karger, Basel 1978 ).

    CAS  Google Scholar 

  2. F.G. Knox, H. Osswald, G.R. Marchand, W.S. Spielman, J.A. Haas, T. Berndt, and S.P. Youngberg, Phosphate transport along the nephron, Am. J. Physiol. 233: F261 (1977).

    PubMed  CAS  Google Scholar 

  3. N. Hoffmann, M. Thees, and R. Kinne, Phosphate transport by isoated renal brush border vesicles, Pflugers Arch. 362: 147 (1976).

    Article  PubMed  CAS  Google Scholar 

  4. F.G. Knox, A. Hoppe, S.A. Kempson, S.V. Shah, and T.P. Dousa, Cellular mechanism of phosphate transport, in “Renal Handling of Phosphate,” S. Massry, ed., Plenum Press, NY (1979), in press.

    Google Scholar 

  5. B. Sacktor, The brush border of the renal proximal tubule and the intestinal mucosa, in “Mammalian Cell Membranes,” G.A. Jamieson and D.M. Robinson, eds., Butterworths, Boston (1977), pp. 221–254.

    Google Scholar 

  6. B. Sacktor, Transport in membrane vesicles from mammalian kidney and intestine, in “Current Topics in Bioenergetics,” 6:39–81 (1977).

    Google Scholar 

  7. A.J. Kenny and A.G. Booth, Organization of the kidney proximal-tubule plasma membrane, Biochem. Soc. Trans. 4: 1011 (1976).

    PubMed  CAS  Google Scholar 

  8. A.G. Booth and A.J. Kenny, Identification of protein subunits in the kidney microvillous membrane. Biochem. Soc. Trans. 4: 348 (1976).

    PubMed  CAS  Google Scholar 

  9. F. Melani, G. Ramponi, M. Farnararo, E. Cocucci, and A. Guerritore, Regulation by phosphate of alkaline phosphatase in rat kidney, Biochim. Biophys. Acta 138: 411 (1967).

    Article  PubMed  CAS  Google Scholar 

  10. S.A. Kempson, J.K. Kim, T.E. Northrup, F.G. Knox, and T.P. Dousa, Alkaline phosphatase in adaptation to low dietary phosphate intake. Am. J. Physiol. (Endocrine) (1979), in press.

    Google Scholar 

  11. U. Trohler, J.-P. Bonjour, and H. Fleisch, Inorganic phosphate homeostasis. Renal adaptation to the dietary intake in intact and thyroparathyroidectomized rats. J. Clin. Invest. 57: 264 (1976).

    Article  PubMed  CAS  Google Scholar 

  12. J.W. McKeown, P.C. Brazy, and V.W. Dennis, Axial heterogeneity of phosphate transport along proximal convoluted tubules: influence of phosphate restriction. Kidney Int. 14: 641 (1978).

    Google Scholar 

  13. R.C. Muhlbauer, J.-P. Bonjour, and H. Fleisch, Tubular localization of adaptation to dietary phosphate in rats, Am. J. Physiol. 233: F342 (1977).

    PubMed  CAS  Google Scholar 

  14. S.A. Kempson and T.P. Dousa, Phosphate transport across renal cortical brush border membrane vesicles from rats stabilized on a normal, high or low phosphate diet, Life Sci. 24: 881 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. S.V. Shah, S.A. Kempson, T.E. Northrup, and T.P. Dousa, Renal adaptation of rats to low phosphate diet (LPD): Possible role of protein synthesis, Clin. Res. 26: 42A (1978).

    Google Scholar 

  16. S.A. Kempson, S.A. Shah, and T.P. Dousa, Renal cortical brush border membrane (BBM) adaptation to short-term dietary phosphate (P) deprivation and its blockade by actinomycin D (Act.D), Clin. Res. 27: 420A (1979).

    Google Scholar 

  17. S.A. Kempson, S.V. Shah, D.M. Heublein, and T.P. Dousa, Phosphate transport by renal cortical brush border membrane (BBM) vesicles: Influence of fasting compared to selective depriation of dietary phosphate (P), Clin. Res. 27: 419A (1979).

    Google Scholar 

  18. S.A. Kempson, S.V. Shah, and T.P. Dousa, Differential effects of phosphate (P) deprivation due to low P diet or due to starvation on renal cortical brush border membrane (BBM), Abstr. 12th Ann. Meeting of Amer. Soc. Nephrol. (1979),in press.

    Google Scholar 

  19. H. Murer, C. Evers, R. Stoll, and R. Kinne, The effect of parathyroid hormone and dietary phosphate on the sodium- dependent phosphate transport system located in the rat renal brush border membrane, in: “Biochemical Nephrology,” W.G. Guder and U. Schmidt, Hans Huber, Bern (1978), pp. 455–461.

    Google Scholar 

  20. T.E. Northrup and T.P. Dousa, Increased transport of phosphate (Pi) across renal brush border membranes of thyroparathyroidectomized (TPTX) rats, Abstr. 61st Ann. Meeting of The Endocrine Society, Anaheim, CA (1979), p. 81, Abstr. #51.

    Google Scholar 

  21. B. Sacktor and L. Cheng, Phosphate transport in rabbit renal proximal tubule membrane vesicles and its regulation, Fed. Proc. 38: 246 (1979).

    Google Scholar 

  22. L. Thomas and R. Kinne, Studies on arrangement of aminopeptidase and alkaline phosphatase in microvilli of isolated brush border of rat kidney, Biochem. Biophys. Acta 255: 114 (1972).

    Article  PubMed  CAS  Google Scholar 

  23. L. Noronha-Blob. Effects of papain on enzyme a transport function of isolated rabbit brush border membrane vesicles. Federation Procedings 38:838 (Abstr. No. 3204 ) (1979).

    Google Scholar 

  24. W.H. Fishman, Perspectives on alkaline phosphatase isoenzymes, Anu Med. 56: 617 (1974).

    Article  CAS  Google Scholar 

  25. H.N. Fernley, Mammalian alkaline phosphatases, in: “The Enzymes,” 3rd éd., P.D. Boyer, ed., Academic Press, New York, vol. 4, pp. 417–445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Dousa, T.P., Kempson, S.A., Shah, S.V. (1980). Adaptive Changes in Renal Cortical Brush Border Membrane. In: Massry, S.G., Ritz, E., Jahn, H. (eds) Phosphate and Minerals in Health and Disease. Advances in Experimental Medicine and Biology, vol 128. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9167-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9167-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9169-6

  • Online ISBN: 978-1-4615-9167-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics