Skip to main content
Log in

Phosphate transport by isolated renal brush border vesicles

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

A sodium dependent specific transport system for phosphate is present in the brush border microvilli but absent from the basal-lateral plasma membranes. The apparent affinity of this transport system for phosphate is 0.08 mM at 100 mM sodium and pH 7.4. It is inhibited competitively by arsenate with an apparent inhibitor constant of 1.1 mM (100 mM sodium, pH 7.4). Sodium dependent phosphate uptake is two times higher at pH 8 compared to the uptake observed at pH 6. The apparent affinity of the transport system for sodium is also pH-dependent, half-maximal stimulation of uptake is found at pH 6 with 129 mM sodium, at pH 7.4 with 60 mM sodium and at pH 8 with 50 mM sodium. Under all conditions a nonhyperbolic dependence of phosphate uptake on the sodium concentration is observed. The uptake of phosphate by brush border microvilli vesicles shows a typical overshoot phenomenon in the presence of sodium gradient across the membrane\((C_{Na_o } > {\text{ }}C_{Na_i } )\). The amount of phosphate taken up after 2 min is about twice the equilibrium value reached after 2 h of incubation. At pH 7.4 the initial rate of uptake is increased only slightly (12%) by inside negative membrane diffusion potentials and inhibited to the same extent by inside positive membrane diffusion potentials.

These results indicate that the entry of phosphate across the brush border membrane into the epithelial cell of the proximal tubule is coupled to the entry of sodium. The transfer of phosphate is dependent on its concentration gradient and on the concentration difference of sodium. The data are best explained by the following hypothesis: Both the primary phosphate as well as the secondary phosphate are transported in cotransport with sodium. The divalent form however seems to be transported preferentially. Its transport occurs electroneutral with 2 sodium ions; the monovalent phosphate also enters the cell together with 2 sodium ions but as a positively charged complex.

The exit of phosphate across the contraluminal cell border is sodium independent and is favoured by the high intracellular phosphate concentration and the inside negative membrane potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agus, Z. S., Gardener, L. B., Beck, L. H., Goldberg, M.: Effects of parathyroid hormone on renal tubular reabsorption of calcium, sodium and phosphate. Amer. J. Physiol.224, 1143–1148 (1973)

    Google Scholar 

  2. Agus, Z. S., Puschett, J. B., Senesky, D., Goldberg, M.: Mode of action of parathyroid hormone and cyclic adenosine 3′,5′-monophosphate on renal tubular phosphate reabsorption in the dog. J. clin. Invest.50, 617–626 (1971)

    Google Scholar 

  3. Baumann, K., Rumrich, G., Papavassiliou, F., Klöss, S.: pH dependence of phosphate reabsorption in the proximal tubule of rat kidney. Pflügers Arch.360, 183–187 (1975)

    Google Scholar 

  4. Baumann, K., de Rouffignac, C., Roinel, N., Rumrich, G., Ullrich, K. J.: Renal phosphate transport: Inhomogeneity of local proximal transport rates and sodium dependence. Pflügers Arch.356, 287–297 (1975)

    Google Scholar 

  5. Blaustein, M. P.: The interrelationship between sodium and calcium fluxes across cell membranes. Rev. Physiol. Biochem. Pharmacol.70, 33–82 (1974)

    Google Scholar 

  6. Brown, K. D., Lamb, J. F.: Na-dependent phosphate transport in cultured cells. Proceedings of The Physiological Society. J. Physiol. (Lond.)251, 58 P (1975)

    Google Scholar 

  7. Brunette, M. G., Taleb, L., Carriere, S.: Effect of parathyroid hormone on phosphate reabsorption along the nephron of the rat. Amer. J. Physiol.225, 1076–1081 (1973)

    Google Scholar 

  8. Caldwell, P. C., Lowe, A. G.: The influx of orthophosphate into squid giant axons. J. Physiol. (Lond.)206, 271–280 (1970)

    Google Scholar 

  9. Chappell, J. B., Crofts, A. R.: Ion transport and reversible volume changes of isolated mitochondria. In: Regulation of metabolic processes in mitochondria, vol. 7 (J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater, eds.), pp. 293–316. Amsterdam: Elsevier 1966

    Google Scholar 

  10. Chappell, J. B., Haarhoff, K. N.: The penetration of the mitochondrial membrane by anions and cations. In: Biochemistry of mitochondria (E. C. Slater, Z. Kaniuga and L. Wojtczak, eds.), pp. 75–91. London-New York: Academic Press, London-Warsaw: Polish Scientific Publishers 1967

    Google Scholar 

  11. Cohen, J. J., Berglund, F., Lotspeich, W. D.: Renal tubular reabsorption of acetoacetate, inorganic sulfate and inorganic phosphate in the dog as affected by glucose and phlorizin. Amer. J. Physiol.184, 91–96 (1956)

    Google Scholar 

  12. Dixon, M., Webb, E. C.: Enzymes, second edition. London: Longmans, Green and Co. 1964

    Google Scholar 

  13. Evers, J., Murer, H., Kinne, R.: Phenylalanine uptake in isolated renal brush border vesicles. Biochim. biophys. Acta (Amst.) (in press, 1976)

  14. Foulks, J. G., Perry, F. A.: Renal excretion of phosphate following parathyroidectomy in the dog. Amer. J. Physiol.196, 554–560 (1959)

    Google Scholar 

  15. Frömter, E., Geßner, K.: Free-flow potential profile along rat kidney proximal tubule. Pflügers Arch.351, 69–83 (1974a)

    Google Scholar 

  16. Frömter, E., Geßner, K.: Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pflügers Arch.351, 85–98 (1974b)

    Google Scholar 

  17. Gekle, D.: Der Einfluß von Parathormon auf die Nierenfunktion. Pflügers Arch.323, 96–120 (1971)

    Google Scholar 

  18. Gerlach, E., Bader, W., Schwoerer, W.: Über den Stoffwechsel säurelöslicher Phosphor-Verbindungen in der Rattenniere. Stationäre Konzentration in der Gesamtniere und Nierenrinde sowie ihre Veränderungen durch Gewebsentnahme, Ischämie und Asphyxie. Pflügers Arch.272, 407–433 (1961)

    Google Scholar 

  19. Ginsburg, J. M.: Effect of glucose and free fatty acid on phosphate transport in dog kidney. Amer. J. Physiol.222, 1153–1160 (1972)

    Google Scholar 

  20. Ginsburg, J. M., Lotspeich, W. D.: Interrelation of arsenate and phosphate transport in the dog kidney. Amer. J. Physiol.205, 707–714 (1963)

    Google Scholar 

  21. Harrison, H. E., Harrison, H. C.: Sodium, potassium, and intestinal transport of glucose, 1-tyrosine, phosphate, and calcium. Amer. J. Physiol.205, 107–111 (1963)

    Google Scholar 

  22. Heidrich, H. G., Kinne, R., Kinne-Saffran, E., Hannig, K.: The polarity of the proximal tubule cell in rat kidney. Different surface charges for the brush-border microvilli and plasma membranes from basal infoldings. J. Cell Biol.54, 232–245 (1972)

    Google Scholar 

  23. Hirata, H., Altendorf, K., Harold, F. M.: Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential. J. biol. Chem.249, 2939–2945 (1974)

    Google Scholar 

  24. Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K. J.: Glucose transport in isolated brush border membrane from rat small intestine. J. biol. Chem.248, 25–32 (1973)

    Google Scholar 

  25. Kinne, R., Shlatz, L., Kinne-Saffran, E., Schwartz, I.: Distribution of membrane-bound cyclic AMP-dependent protein kinase in plasma membranes of cells of the kidney cortex. J. Membrane Biol.24, 145–159 (1975)

    Google Scholar 

  26. Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G.: Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes. J. Membrane Biol.21, 375–395 (1975)

    Google Scholar 

  27. Klingenberg, M., Durand, R., Guérin, B.: Analysis of the reactivity of SH-reagents with the mitochondrial phosphate carrier. Europ. J. Biochem.42, 135–150 (1974)

    Google Scholar 

  28. Kupfer, S., Kosovsky, J. D.: Renal intracellular phosphate and phosphate excretion: The effect of digoxin and parathyroid hormone. Mt. Sinai J. Med.37, 359–374 (1970)

    Google Scholar 

  29. Levitan, B. A.: Effect in normal man of hyperglycemia and glycosuria on excretion and reabsorption of phosphate. J. appl. Physiol.4, 225–226 (1951)

    Google Scholar 

  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem.193, 265–275 (1951)

    Google Scholar 

  31. Melanie, F., Ramponi, G., Farnararo, E., Cocucci, E., Guerritore, A.: Regulation by phosphate of alkaline phosphatase in rat kidney. Biochim. biophys. Acta (Amst.)138, 411–420 (1967)

    Google Scholar 

  32. Mitchell, P., Moyle, J.: Translocation of some anions, cations and acids in rat liver mitochondria. Europ. J. Biochem.9, 149–155 (1969)

    Google Scholar 

  33. Moroz, L. A., Krane, S. M.: Phosphate transport by suspensions of tubules from rat kidney cortex. J. clin. Invest.42, 958 (1963)

    Google Scholar 

  34. Murer, H., Sigrist-Nelson, K., Hopfer, U.: On the mechanism of sugar and amino acid interaction in intestinal transport. J. biol. Chem.250, 7392–7396 (1975)

    Google Scholar 

  35. Papa, S., Lofrumento, N. E., Loglisci, M., Quagliariello, E.: On the transport of inorganic phosphate and malate in rat-liver mitochondria. Biochim. biophys. Acta (Amst.)189, 311–314 (1969)

    Google Scholar 

  36. Perrin, D. D.: Dissociation constants of inorganic acids and bases in aqueous solution. In: Inter. Union of Pure and Applied Chemistry (D. D. Perrin, ed.), pp. 189–191. London: Butterworth 1969

    Google Scholar 

  37. Pockrandt-Hemstedt, H., Schmitz, J. E., Kinne-Saffran, E., Kinne, R.: Morphologische und biochemische Untersuchungen über die Oberflächenstruktur der Bürstensaummembran der Rattenniere. Pflügers Arch.333, 297–313 (1972)

    Google Scholar 

  38. Schultz, S. G., Curran, P. F.: Coupled transport of sodium and organic solutes. Physiol. Rev.50, 637–718 (1970)

    Google Scholar 

  39. Shlatz, L., Schwartz, I., Kinne-Saffran, E., Kinne, R.: Distribution of parathyroid hormone-stimulated adenylate cyclase in plasma membranes of cells of the kidney cortex. J. Membrane Biol.24, 131–144 (1975)

    Google Scholar 

  40. Siegenthaler, P. A., Belsky, M. M., Goldstein, S.: Phosphate uptake in an obligately marine fungus: A specific requirement for sodium. Science155, 93–94 (1967)

    Google Scholar 

  41. Straub, R. W., Anner, B., Ferrero, J., Jirounek, P.: Transport of inorganic phosphates across nerve membranes. In: Comparative physiology, vol. 2., chapter 3.9. (L. Bolis, S. H. P. Moddrell, and K. Schmidt-Nielsen, eds.). Amsterdam: North Holland 1975

    Google Scholar 

  42. Strickler, J. C., Thompson, D. D., Klose, R. M., Giebisch, G.: Micropuncture study of inorganic phosphate excretion in the rat. J. clin. Invest.43, 1596–1607 (1964)

    Google Scholar 

  43. Tanaka, Y., Deluca, H. F.: The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch. Biochem. Biophys.154, 566–574 (1973)

    Google Scholar 

  44. Taylor, A. N.: In vitro phosphate transport in chick ileum: Effect of cholecalciferol, calcium, sodium and metabolic inhibitors. J. Nutr.104, 489–494 (1974)

    Google Scholar 

  45. Wassermann, R. H., Taylor, A. N.: Intestinal absorption of phosphate in the chick: Effect of vitamin D3 and other parameters. J. Nutr.103, 586–599 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, N., Thees, M. & Kinne, R. Phosphate transport by isolated renal brush border vesicles. Pflugers Arch. 362, 147–156 (1976). https://doi.org/10.1007/BF00583641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00583641

Key words

Navigation