Skip to main content

Micropuncture Techniques

  • Chapter
Renal Pharmacology

Abstract

In the 1920s Richards and co-workers introduced the idea of collecting fluid from single nephrons in the frog to gain insight into the formation of urine (Wearn and Richards, 1924; Richards and Schmidt, 1924). Since 1941, when Walker et al. first applied this technique to the mammalian kidney, the use of micropuncture has increased markedly. The development of stationary microperfusion (Richards and Walker, 1937), shrinking droplet (Gertz and Ullrich, 1961), microinjection (Gottschalk et al., 1965), microcatheterization (Jarausch and Ullrich, 1956), microperfusion (Sonnenberg and Deetjen, 1964), and peritubular microperfusion and injection techniques (Lechene and Morel, 1965; Frömter et al., 1968; Windhager, 1968b) proved to be important sophistications of the micropuncture technique. Although free-flow micropuncture remains the basic tool, all of the above techniques have found widespread use and have contributed considerably to the knowledge of current nephrology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreucci, V. E., Rector, F. C. 1972. Some artifacts in measuring single-nephron glomerular filtration rate. Yale J. Biol. Med., 45:217.

    PubMed  CAS  Google Scholar 

  • Andreucci, V. E., Herrera-Acosta, J., Rector, F. C., Jr., and Seldin, D. W. 1971. Measurement of single-nephron glomerular filtration rate by micropuncture: analysis of error. Am. J. Physiol., 221:1551.

    PubMed  CAS  Google Scholar 

  • Bank, N., Aynedjian, H. S., and Wada, T. 1972. Effect of peritubular capillary perfusion rate on proximal sodium reabsorption. Kidney Intern., 1:397.

    Article  CAS  Google Scholar 

  • Baumann, K., deRouffignac, C., Roinel, N., Rumrich, G., and Ullrich, K. J. 1975. Renal phosphate transport: Inhomogeneity of local proximal transport rates and sodium dependence. Pflügers Arch., 356:287.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, B. M., and Daugharty, T. M. 1972. The measurement of glomerular filtration rate in single nephrons of the rat kidney. Yale J. Biol. Med., 45:200.

    PubMed  CAS  Google Scholar 

  • Cortell, St., Davidman, M., and Gennari, F. J. 1972. Catheter size as a determinant of outflow resistance and intrarenal pressure. Am. J. Physiol., 223:910.

    PubMed  CAS  Google Scholar 

  • Davidman, M., Lalone, R. C., Alexander, E. A., and Levinsky, N. G. 1971. Some micropuncture techniques in the rat. Am. J. Physiol., 221:1110.

    PubMed  CAS  Google Scholar 

  • Dev, B., Häberle, D., Schnermann, J., and Wunderlick, P. 1973. Effect of barbiturates on GFR and fluid reabsorption along proximal convoluted tubules and loops of Henle in rats. Pflügers Arch., 344:21.

    Article  PubMed  CAS  Google Scholar 

  • Elmer, M., Eskildsen, P. C., Kristensen, L. O., and Leyssac, P. P. 1972. A comparison of renal function in rats anesthetized with inactin and sodium amytal. Acta Physiol. Scand., 86:41.

    Article  PubMed  CAS  Google Scholar 

  • Foulkes, E. C. 1976. Peritubular transport of urate and amino acids in rat kidney. In: Amino Acid Transport and Uric Transport, pp. 211–216. Ed. by Silbernagl, S., Lang, F., and Greger. R. Thieme Verlag, Stuttgart.

    Google Scholar 

  • Frömter, E., Rumrich, G., and Ullrich, K. J. 1973. Phenomenologic description of Na+, Cl- and HCO 3 absorption from proximal tubules of the rat kidney. Pflügers Arch., 343:189.

    Article  PubMed  Google Scholar 

  • Frömter, E., Müller, C. W., and Knauf, H. 1968. Fixe negative Wandladungen in proximalen Konvolut der Rattenniere und ihre Beeinflussung durch Calciumionen. In: VI Symposium der Gesellschaft für Nephrologie, Wien.

    Google Scholar 

  • Fuchs, G. 1965. Stochastische Modelle in der Nierenphysiologie. Biometr. Zschr., 2:25.

    Google Scholar 

  • Gertz, K. H., and Ullrich, K. J. 1961. Methode zur Analyse des Stofftransportes am einzelnen Tubulus der intakten Rattenniere. Pflügers Arch., 274:61.

    Article  Google Scholar 

  • Gertz, K. H. 1963. Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattennier. Pflügers Arch., 276:336.

    Article  CAS  Google Scholar 

  • Gottschalk, C. W., and Lassiter, W. E. 1974. The intratubular microinjection technique. In: Proc. 5th Int. Congr. Nephrol., Mexico, Vol. 2, pp. 116–123, Karger, Basel.

    Google Scholar 

  • Gottschalk, C. W., Morel, F., and Mylle, M. 1965. Tracer microinjection studies of renal tubular permeability. Am. J. Physiol., 209:173.

    PubMed  CAS  Google Scholar 

  • Grandchamp, A., and Boulpaep, E. L. 1972. Effect of intraluminal pressure on proximal tubular sodium reabsorption. A shrinking drop micropuncture study. Yale J. Biol. Med., 45:275.

    PubMed  CAS  Google Scholar 

  • Greger, R., Lang, F., Marchand, G., and Knox, F. G. 1977. Site of renal phosphate reabsorption in rat kidney-micropuncture and microinfusion study. Pflügers Arch., 369:111.

    Article  PubMed  CAS  Google Scholar 

  • Gutsche, H. U., Müller-Suur, R., Hegel, U., Hierholzer, K., and Lüderitz, S. 1975. A new method for intratubular blockade in micropuncture experiments. Pflügers Arch., 354:197.

    Article  PubMed  CAS  Google Scholar 

  • Györy, A. Z. 1971. Reexamination of the split oil droplet method as applied to kidney tubules. Pflügers Arch., 324:328.

    Article  PubMed  Google Scholar 

  • Heller, J. 1971. The influence of Lissamine green on tubular reabsorption of electrolytes and water in rats. Pflügers Arch., 323:27.

    Article  PubMed  CAS  Google Scholar 

  • Hierholzer, K., Butz, M., Müller-Suur, R., and Lichtenstein, I. 1972. Pressure measurements in proximal surface tubules of the rat-single nephron filtration rate and tubuloglomerular feedback. Yale J. Biol. Med., 45:224.

    PubMed  CAS  Google Scholar 

  • Jamison, R. L. 1973. Intrarenal heterogeneity. The case for two functionally dissimilar populations of nephrons in the mammalian kidney. Am. J. Med., 54:281.

    Article  PubMed  CAS  Google Scholar 

  • Jarausch, K. H., and Ullrich, K. J. 1956. Zur Technik der Entnahme von Harnproben aus einzelnen Sammelrohren der Säugetierniere mittels Polyäthylen-Capillaren. Pflügers Arch., 264:88.

    Article  Google Scholar 

  • Knox, F. G., and Marchand, G. R. 1976. Study of renal action of diuretics by micropuncture techniques. In: Methods in Pharmacology, Vol. 4A, Renal Pharmacology, pp. 73–98. Ed. by Martinez-Maldonaldo, M. Plenum Press, New York.

    Chapter  Google Scholar 

  • Kramp, R. A. 1976. Urate transport in the rat nephron: a microinjection study. In: Amino Acid Transport and Uric Acid Transport, pp. 201–211, Ed. by Silbemagl, S., Lang, F., and Greger, R. Thieme Verlag, Stuttgart.

    Google Scholar 

  • Kramp, R. A., Lassiter, W. E., and Gottschalk, C. W. 1971. Urate-2-14 transport in the rat nephron. J. Clin. Invest., 50:35.

    Article  PubMed  CAS  Google Scholar 

  • Lang, F., Greger, R., and Deetjen, P. 1972. Handling of uric acid by the rat kidney. II. Microperfusion studies on bidirectional transport of urate in the proximal tubule. Pflügers Arch., 335:251.

    Article  Google Scholar 

  • Lang, F., Greger, R., and Deetjen, P. 1973. Handling of uric acid by the rat kidney. III. Microperfusion studies on steady state concentration of uric acid in the proximal tubule. Consideration of free flow conditions. Pflügers Arch., 338:295.

    Article  PubMed  CAS  Google Scholar 

  • Lang, F., Greger, R., and Deetjen, P. 1974. In vivo studies on uricase activity in the rat. Pflügers Arch., 351:323.

    Article  PubMed  CAS  Google Scholar 

  • Lang, F., Greger, R., Marchand, G., and Knox, F. 1977. Stationary microperfusion study of phosphate reabsorption in proximal and distal nephron segments. Pflügers Arch., 368:45.

    Article  PubMed  CAS  Google Scholar 

  • Langer, K. H., Thoenes, W., and Wiederholt, M. 1968. Licht- und elektronenmikroskopische Untersuchungen am proximalen Tubuluskonvolut der Rattenniere nach intraluminaler Ölinjektion. Pflügers Arch., 302:149.

    Article  PubMed  CAS  Google Scholar 

  • Lechene, C., and Morel, F. 1965. Microinjections de sodium et d’inuline marques dans les capillaires du rein de Hamster. I. Permeabilité au sodium des segments tubulaires corticaux. Nephron, 2:201.

    Google Scholar 

  • Lingard, J., Rumrich, G., and Young, J. A. 1973. Reabsorption of L-glutamine and L-histidine from various regions of the rat proximal convolution studied by stationary microperfusion: Evidence that the proximal convolution is not homogeneous. Pflügers Arch., 342:1.

    Article  PubMed  CAS  Google Scholar 

  • Lohfert, H., Lichtenstein, I., Butz, M., and Hierholzer, K, 1971. Continuous measurement of renal intratubular pressures with a combined pressure transducer microperfusion system. Pflügers Arch., 327:191.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, R. E., Schneider, E. G., Strandhoy, J. W., Willis, L. R., and Knox, F. G. 1973. Effect of Lissamine green dye on renal sodium reabsorption in the dog. J. Appt. Physiol., 35:169.

    CAS  Google Scholar 

  • Morel, F., and Murayama, Y. 1970. Simultaneous measurement of unidirectional and net sodium fluxed in microperfused rat proximal tubules. Pflügers Arch., 320:1.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, K., Clapp, J. R., and Robinson, R. R. 1970. Limitations of the shrinking-drop micropuncture technique. Am. J. Physiol., 210:345.

    Google Scholar 

  • Quehenberger, P., Lang, F., Greger, R., and Deetjen, P. 1974. pH measurements in the loops of Henle of the rat kidney. Pflügers Arch., 347:R 68 (Abstract).

    Google Scholar 

  • Rector, F. C., Andreucci, V. E., Herrera-Acosta, J., and Seldin, D. W. 1972. Potential sources of error in measuring single nephron filtration rate. Yale J. Biol. Med., 45:193.

    PubMed  Google Scholar 

  • Rector, F. C., Jr., Brunner, F. P., Sellman, J. C., and Seldin, D. W. 1966. Pitfalls in the use of micropuncture for the localization of diuretic action. Ann. N.Y. Acad. Sci., 139:400.

    Article  PubMed  CAS  Google Scholar 

  • Richards, A. N., and Schmidt, C. F. 1924. A description of the glomerular circulation in the frog’s kidney and observations concerning the action of adrenalin and various other substances upon it. Am. J. Physiol., 71:178.

    CAS  Google Scholar 

  • Richards, A. N., and Walker, A. M. 1937. Methods of collecting fluid from known regions of the renal tubules of amphibia and of perfusing the lumen of a single tubule. Am. J. Physiol., 118:111.

    CAS  Google Scholar 

  • Roch-Ramel, F., and Jotterand, N. 1970. Natriuretic effect of lissamine green. Experientia, 26:683.

    Google Scholar 

  • Sauer, F. 1973. Nonequilibrium thermodynamics of kidney tubule transport. In: Handbook of Physiology, Vol. VIII, Renal Physiology, pp. 399–414. Ed. by Orloff, J. and Berliner, R. W. American Physiological Society, Washington, D.C.

    Google Scholar 

  • Schnermann, J. 1972. Methodological aspects of filtrate determination by the micropuncture technique. Yale J. Biol. Med., 45:211.

    PubMed  CAS  Google Scholar 

  • Shipp, J. C., Hanenson, I. B., Windhager, E. E., Schatzmann, H. J., Whittembury, G., Yoshimura, H., and Solomon, A. K. 1958. Single proximal tubules of the Necturus kidney. Methods for micropuncture and microperfusion. Am. J. Physiol., 195:563.

    PubMed  CAS  Google Scholar 

  • Silbernagl, S., and Deetjen, P. 1969. Micropuncture studies of proximal tubular reabsorption of glycin. Pflügers Arch., 312:82 (abstr.).

    Article  Google Scholar 

  • Sonnenberg, H., and Deetjen, P. 1964. Methode zur Durchströmung einzelner Nephronabschnitte. Pflügers Arch, 278:669.

    Article  CAS  Google Scholar 

  • Spitzer, A., and Windhager, E. E. 1970. Effect of peritubular oncotic pressure changes on proximal tubular fluid reabsorption. Am. J. Physiol., 218:1188.

    PubMed  CAS  Google Scholar 

  • Steinhausen, M. 1963. Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo and ihre Anwendung zur Bestimmung tubulärer Strömungsgeschwindigkeiten. Pflügers Arch., 277:23.

    Article  Google Scholar 

  • Steinhausen, M., Hill, E., and Parekh, N. 1976. Intravital microscopical studies of the tubular urine flow in the conscious rat. Pflügers Arch., 362:261.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, K. J. 1973. Permeability characteristics of the mammalian nephron. In: Handbook of Physiology, Vol. VIII, Renal Physiology, pp. 377–398. Ed. by Orloff, J. and Berliner, R. W. American Physiological Society, Washington, D.C.

    Google Scholar 

  • Ullrich, K. J., Frömter, E., and Baumann, K. 1969. Micropuncture and microanalysis in kidney physiology. In: Laboratory Techniques in Membrane Biophysics, pp. 106–129. Ed. by Passow, H. and Stämpfli, R. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Walker, A. M., and Oliver, J. 1941. Methods for the collection of fluid from single glomeruli and tubules of the mammalian kidney. Am. J. Physiol., 133:562.

    Google Scholar 

  • Walker, A. M., Bott, P. A., Oliver, J., and McDowell, M. C. 1941. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol., 134:580.

    CAS  Google Scholar 

  • Wearn, J. T., and Richards, A. N. 1924. Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Am. J. Physiol., 71:209.

    CAS  Google Scholar 

  • Weinmann, E. J., Hardy, R. J., Kashgarian, M., and Hayslett, J. P. 1972. Examination of the Gertz technique as applied to the proximal tubule of the rat kidney. Yale J. Biol. Med., 45:289.

    Google Scholar 

  • Wiederholt, M., Langer, K. H., Thoenes, K., and Hierholzer, K. 1968. Funktionelle und morphologische Untersuchungen am proximalen und distalen Konvolut der Rattenniere zur Methode der gespaltenen Ölsäule. Pflügers Arch., 302:166.

    Article  PubMed  CAS  Google Scholar 

  • Windhager, E. E. 1968a. Micropuncture Techniques and Nephron Function. Butterworth, London.

    Google Scholar 

  • Windhager, E. E. 1968b. Peritubuläre Kontrolle der Natriumresorption im proximalen Tubulus. In: VI Symposium der Gesellschaft für Nephrologie, Wien.

    Google Scholar 

  • Young, J. A., and Lingard, J. M. 1976. Handling of neutral amino acids by the proximal tubule of the rat nephron. In: Amino Acid Transport and Uric Acid Transport, pp. 86–95. Ed. by Silbernagl, S., Lang, F., and Greger, R. Thieme Verlag, Stuttgart.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Lang, F., Greger, R., Lechene, C., Knox, F.G. (1978). Micropuncture Techniques. In: Martinez-Maldonado, M. (eds) Renal Pharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8894-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8894-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8896-2

  • Online ISBN: 978-1-4615-8894-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics