Skip to main content

Ocean Circulation and Marine Life

  • Chapter
Advances in Oceanography

Abstract

The geostrophic nature of the gross patterns of ocean circulation, with the wind-driven convergences within the anticyclonic gyres and the divergences within the cyclonic gyres, along the equator and the eastern boundaries, provides a set of quite different biological provinces. Because of their several climates and differences in vertical circulation, the various gyres contain different sets of nutrient and temperature characteristics, and these provide separate oceanic habitats. The principal cyclonic gyres are in the subarctic and subantarctic latitudes and have equatorward extensions along the eastern boundaries. They are cold, high in nutrients, and undergo large seasonal changes: a relatively small number of species is indigenous to these gyres, but the biomass is relatively large.

The principal anticyclonic gyres are in the subtropical zones, are warm and low in nutrients, with less seasonal variations than at higher latitudes: a larger number of species is indigenous to these gyres, but the biomass is small. The subequatorial zone contains a series of alternate eastward and westward flows, with associated ridging in thermocline depth. It is the warmest of the zones at the surface but is colder beneath the upper layer than the anticyclonic gyres. It also contains a large number of species and a large biomass, but there is substantial east-west variation: some species are confined to the east. There are also species that inhabit the zones between the subtropical and subarctic gyres. It is not certain how these maintain their geographical position within predominantly eastward flow. Perhaps some extend farther equatorward at greater depths, where the westward flow extends into somewhat higher latitudes; perhaps a resident population along the western boundary can maintain these mid-ocean patterns.

While these general patterns are observed in all oceans, there are notable differences. The tropical gyre of the North Atlantic, which is the warmest of the oceans, extends into higher latitudes; some species can extend all the way from the central North Atlantic into the Barents Sea and as far as Novaya Zemblya (75°N), at least in summer.

In the eastern tropical oceans the waters just beneath the upper layer are cold and, farthest from their surface sources, are lowest in oxygen concentration. Many of the shallow-living zooplankters that inhabit the anticyclonic gyres extend into the eastern tropical Pacific without showing any effect from these subsurface oxygen minima, but some of the more deeply vertically-migrating forms, while present in the surrounding waters, are excluded from the areas of lowest subsurface oxygen concentration. Some species, however, occupy only the waters in and above these low-oxygen layers.

Within this system of circulation the number of plankton species appears to vary with the biological province. The fewest species occur at latitudes poleward of about 45° within the subarctic and subantarctic gyres. The numbers increase abruptly equatorward from there within the anticyclonic gyres and remain high almost to the equator where there may be a small decrease. Perhaps the highest numbers are found where the subtropical and subequatorial types overlap, and where these are carried by the equatorial currents into the western boundary current and encounter a few of the local forms and some of the subarctic forms.

Phytoplankton species appear to have patterns somewhat different from those of the zooplankton. The subarctic and subantarctic gyres contain some bipolar species of zooplankton but few if any of phytoplankton, and the subequatorial zone appears to contain no endemic species of phytoplankton. Phytoplankton species tend to be more widespread and less environmentally specialized than zooplankton species. There is a higher percentage of cosmopolitan species and a higher percentage of circumglobal species in the subarctic environments; however, there are few if any bipolar species. There are no species restricted to environments which are not defined by one of the major circulation gyres. Apparently many of the mechanisms which effectively isolate populations of zooplankton, allowing genetic divergence, are not effective for phytoplankton. The dominance of asexual reproduction among phytoplankton may also be a factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ALVARINO A. (1962) Two new Pacific chaetognaths. Bulletin of the Scripps Institution of Oceanography of the University of California, 8(1), 1–50.

    Google Scholar 

  • ALVARINO A. (1965) Distributional atlas of chaetognatha in the California Current region. CalCOFI Atlas No. 3, State of California Marine Research Committee, i–xiii, plates 1–291.

    Google Scholar 

  • BAKER A. de C. (1954) The circuffipolar continuity of Antarctic plankton species. ‘DiscoveryReports, 27, 201–218.

    Google Scholar 

  • BANNER A.H. (1949) A taxonomic study of the Mysidacea and Euphausiacea (Crustacea) of the northeastern Pacific. Part III, Order Euphausiacea. Transactions of the Royal Canadian Institute, 28(58), 1–63.

    Google Scholar 

  • BE A. W. H., J.M. FORNS and O. A. ROELS (1971) Plankton abundance in the North Atlantic Ocean. In: Fertility of the Sea, Vol. 1, J. D. COSTLOW, JR., editor, Gordon and Breach, pp. 17–50.

    Google Scholar 

  • BEKLEMISHEV C. W. (1969) Ecology and biogeography of the open ocean. Akademia Nauk SSSR, Publishing House “NAUKA”, 291 pp. (In Russian)

    Google Scholar 

  • BIERI R. (1959) The distribution of the planktonic Chaetognatha in the Pacific and their relationship to the water masses. Limnology and Oceanography, 4(1), 1–28.

    Article  Google Scholar 

  • BOWMAN T. E. (1967) The planktonic shrimp, Lucifer chacei sp. nov. (Sergestidae: Luciferinae), the Pacific twin of the Atlantic Lucifer faxoni. Pacific Science, 2 (2), 266–271.

    Google Scholar 

  • BRAARUD T. (1962) Species distribution in marine phytoplankton. Journal of the Oceano grap hica1 Society of Japan, 20th Anniversary Volume, 628–649.

    Google Scholar 

  • BRADFORD J. M. (1974) Euchaeta marina (Prestandrea) (Copepoda, Calanoida) and two closely related new species from the Pacific. Pacific Science, 28(2), 159–169.

    Google Scholar 

  • BRINTON E. (1962) The distribution of Pacific euphausiids. Bulletin of the Scripps Institution of Oceanography of the University of California, 8 (2), 51–270.

    Google Scholar 

  • BRINTON E. (1967) Distributional atlas of Euphausiacea (Crustacea) in the California Current region, Part I. CalCOFI Atlas No. 5, State of California Marine Research Committee, i–xi, plates 1–275.

    Google Scholar 

  • BRINTON E. (1975) Euphausiids of southeast Asian waters. Naga Report, Vol. 4, Part 5, Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959–1961, Scripps Institution of Oceanography of the University of California, 287 pp.

    Google Scholar 

  • BRODSKY K. A. (1959) On phylogenetic relations of some Calanus (Copepoda) species of northern and southern hemispheres. Zoologicheskii Zhurnal, Moscow, 38(10), 1537–1553. (In Russian)

    Google Scholar 

  • BRODSKY K. A. (1964) Variability and systematics of the species of the genus Calanus (Copepoda). Explorations of the fauna of the seas II(X): Results of biological investigations of the Soviet Antarctic Expedition (1955–1958, 2, Akademia Nauk SSSR Zoologicheskii Institut, 189–251. (In Russian)

    Google Scholar 

  • BRODSKY K.A. (1965) Variability and systematics of the species of the genus Calanus(Copepoda). 1. Calanus pacificus Brodsky, 1948, and C. sinicus Brodsky, n. sp. Explorations of the fauna of the seas III(XI): Marine fauna of the northwest Pacific Ocean, Publishing house “Nauka”, pp. 22–71. (In Russian)

    Google Scholar 

  • BRODSKY K. A. (1972) Phylogeny of the family Calanidae (Copepoda) on the basis of comparative-morphological analysis of its characters. Explorations of the fauna of the seas XII(XX): Geographical and seasonal variability of marine planktonic organisms, Publishing house “NAUKA”, pp. 5–110. (In Russian)

    Google Scholar 

  • CUPP E. E., (1943) Marine plankton diatoms of the west coast of North America. Bulletin of the Scripps Institution of the University of California, 5(1), 1–237.

    Google Scholar 

  • DAMAS D. (1905) Notes biologiques sur les Copépodes de la mer norvégienne. Publications de Circonstance, Conseil Permanent International pour l’Exploration de la Mer, 22, 3–23.

    Google Scholar 

  • DAMAS D. and E. KOEFOED (1907) Le plankton de la mer du Grönland. In: Croisière Oceanographique dans la Mer du Grönland, 1905, Duc d’Orleans, 357–453.

    Google Scholar 

  • DICKSON R.R. (1972) On the relationship between ocean transparency and the depth of sonic scattering layers in the North Atlantic. Journal du Conseil Permanent International pour l’Exploration de la Mer, 34(3), 416–422.

    Google Scholar 

  • DODIMEAD A. J., F. FAVORITE AND T. HIRANO (1963) Review of the oceanography of the subarctic Pacific region. Part II of Salmon of the North Pacific Ocean, Bulletin, International North Pacific Fisheries Commission, No. 13, 195 pp.

    Google Scholar 

  • FLEMINGER A. (1967) Distributional atlas of calanoid copepods in the California Current region, Part II. CalCOFI Atlas No. 7, State of California Marine Research Committee, i–xv, plates 1–213.

    Google Scholar 

  • FLEMINGER A. (1973) Pattern, number variability and taxonomic significance of integumental organs (sensilla and glandular pores) in the genus Eucalanus (Copepoda, Calanoida). Fishery Bulletin, U.S. National Marine Fisheries Service, 71(4), 965–1010.

    Google Scholar 

  • FLEMINGER A. and K. HULSEMANN (1973) Relationship of Indian Ocean epiplanktonic calanoids to1the world oceans. In: Ecological Studies, Analysis and Synthesis, Vol. 3, B. ZEITZSCHEL, editor, Springer-Verlag, pp. 339–347.

    Google Scholar 

  • FLEMINGER A. and K. HULSEMANN (1974) Systematics and distribution of the four sibling species comprising the genus Pontellina Dana (Copepoda, Calanoida). Fishery Bulletin, U.S. National Marine Fisheries Service, 72(1), 63–120.

    Google Scholar 

  • FLEMINGER A. and K. HULSEMANN (in press) Geographical range and taxonomic divergence in North Atlantic Calanus C. helgolandicus, C. finmarchicus, C. glacialis). Marine Biology.

    Google Scholar 

  • FOXTON P. (1961) Salpa fusiformis Cuvier and related species. ‘DiscoveryReports, 32, 1–32.

    Google Scholar 

  • FREDERICK M. A. (1970) An atlas of Secchi disc transparency measurements and Forel-Ule color codes for the oceans of the world. M.S. thesis, U.S. Naval Postgraduate School, Monterey, California, 179 pp.

    Google Scholar 

  • FROST B. (1969) Distribution of the oceanic epipelagic copepod genus Clausocalanus with an analysis of sympatry of North Pacific species. Ph.D. dissertation, University of California, San Diego, La Jolla, California, 319 pp.

    Google Scholar 

  • FROST B. W. (1974) Calanus marshallae, a new species of calanoid copepod closely allied to the sibling Species C. finmarchicus and C. glacialis. Marine Biology, 26, 77–99.

    Article  Google Scholar 

  • FROST, B. and A. FLEMINGER (1968) A revision of the genus Clausocalanus (Copepoda, Calanoida) with remarks on distributional patterns in diagnostic characters. Bulletin of the Scripps Institution of Oceanography of the University of California, 12, 1–235.

    Google Scholar 

  • GAARDER K. R. and B. R. HEIMDAL (in press) A revision of the genus Syracosphaera Lohmann (Coccolithineae).

    Google Scholar 

  • GOPALAKRISHNAN K. (1974) Zoogeographic of the Nematoscelis crustacea Euphausiacea. Fishery Bulletin, U.S. National Marine Fisheries Service, 72(4), 1039–1074.

    Google Scholar 

  • GRAHAM H. W. and N. BRONIKOVSKY (1944) The genus Ceratium in the Pacific and North Atlantic Oceans. Scientific Results. Cruise VII of the Carnegie 1928–1929, Biology, 5, 1–209.

    Google Scholar 

  • HASLE G. R. (1964) Nitzschia and Fragilariopsis species studied in the light and electron microscopes. I. Some marine species of the groups Nitzschiella and Lanceolatae. Skrifter utgitt av det Norske videnskaps-akademi i Oslo, I. Mat.-Naturv. Klasse, Ny Serie, 16, 1–48.

    Google Scholar 

  • HASLE G. R. (1965a) Nitzschia and Fragilariopsis species studied in the light and electron microscopes. II. The group Pseudonitzschia. Skrifter utgitt av det Norske videnskaps-akademi i Oslo, I. Mat.-Naturv. Klasse, Ny Serie, 18, 1–45.

    Google Scholar 

  • HASLE G. R. (1965b) Nitzschia and Pragilariopsis species studied in the light and electron microscopes. III. The genus Fragilariopsis. Skrifter utgitt av det Norske videnskaps-AKADEMI i Oslo, I. Mat.-Naturv. Klasse, Ny Serie, 21, 1–49.

    Google Scholar 

  • HASLE G. R. (1975) The biogeography of some marine planktonic diatoms. Deep-Sea Research, 23(4), 319–338.

    Google Scholar 

  • HASLE G. R. and B. R. HEIMDAL (1970) Some species of the centric diatom genus Thalassiosira studied in the light and electron microscopes. Nova Hedwigia, Beiheft, 31, 543–581.

    Google Scholar 

  • HEINRICH A. K. (1975a) The significance of the expatriated species in the structure of the planktonic tropical communities of the Pacific Ocean. Okeanologiia, 15(4), 721–725. (In Russian)

    Google Scholar 

  • HEINRICH A. K. (1975b) On the boundaries of oceanic planktonic communities. Okeanologiia, 15(6), 1097–1100. (In Russian)

    Google Scholar 

  • HENTSCHEL E. (1942) Eine biologische Karta des Atlantischen Ozeans. Zoologischer Anzeiger, 137 (7/8), 103–123.

    Google Scholar 

  • HENTSCHEL E. and H. WATTENBERG (1930) Plankton und Phosphat in der Oberflachenschicht des Sudatlantischen Ozeans. Annalen der Hydrographie und Maritimen Meteorologie, 58, 273–277.

    Google Scholar 

  • HONJO S. and H. OKADA (1974) Community structure of coccolithophores in the photic layer of the mid-Pacific. Micropaleontology, 20, 209–230.

    Article  Google Scholar 

  • JASCHNOV W. A. (1970) Distribution of Calanus species in the seas of the northern hemisphere. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 55, 197–212.

    Article  Google Scholar 

  • JOHN D. D. (1936) The southern species of the genus Euphausia. ‘DiscoveryReports, 14, 193–324.

    Google Scholar 

  • JOHNSON M. W. and E. BRINTON (1963) Biological species, water masses and currents. In: The Sea, Vol. 2, M. N. HILL, editor, Interscience, 381–414.

    Google Scholar 

  • JONES E. C. (1965) Evidence of isolation between populations of Candacia pachydactyla (Dana) (Copepoda: Calanoida) in the Atlantic and the Indo-Pacific Oceans. In: Symposium on Crustacea, Marine Biological Association of India, Part 1, Series 2, 406–410

    Google Scholar 

  • KOBLENTZ-MISHKE O. J., V. V. VOLKOVINSKY, J. G. KABANOVA (1970) Plankton primary production of the world ocean. In: Scientific Exploration of the South Pacific, W. S. WOOSTER, editor, Scientific Committee on Oceanic Research (SCOR, pp. 183–193.

    Google Scholar 

  • LOVE C. M. and R. M. ALLEN, editors (1975) EASTROPAC Atlas, Vol. 10: Biological and nutrient chemistry data from principal particpating ships, third survey cruise, February–March 1968. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Circular 330, i–viii, 137 figures.

    Google Scholar 

  • MACKINTOSH N. A. (1937) The seasonal circulation of the Antarctic macroplankton. ‘DiscoveryReports, 16, 365–412.

    Google Scholar 

  • MARUMO R. (1966) Sagitta elegans in the Oyashio Undercurrent. Journal of the Oceanographical Society of Japan, 22(4), 129–137.

    Google Scholar 

  • McGOWAN, J. A. (1960) The Systematics, distribution, and abundance of the Euthecosomata of the North Pacific. Ph.D. dissertation, University of California, San Diego, La Jolla, California, 212 pp.

    Google Scholar 

  • McGOWAN J. A, (1963) Geographical variation in Limacina helicina in the North Pacific. Speciation in the sea. Systematics Association Publication No.5, British Museum of Natural History, pp. 109–128.

    Google Scholar 

  • McGOWAN J. A. (1971) Oceanic biogeography of the Pacific. In: The Micropaleontology of Oceans, B. M. FUNNELL and W. R. RIEDEL, editors, Cambridge University Press, pp. 3–74.

    Google Scholar 

  • McGOWAN J. A. (1974) The nature of oceanic ecosystems. In: The Biology of the Oceanic Pacific, C. MILLER, editor, Oregon State University Press, pp. 9–28.

    Google Scholar 

  • McGOWAN J. A. and P. M. WILLIAMS (1973) Oceanic habitat differences in the North Pacific. Journal of Experimental Marine Biology and Ecology, 12, 187–217.

    Article  Google Scholar 

  • MONTGOMERY R. B. and M. J. POLLAK (1942) Sigma-T surfaces in the Atlantic Ocean. Journal of Marine Research, 5(1), 20–27.

    Google Scholar 

  • ØSTVEDT O.-J. (1955) Zooplankton investigations from Weather Ship M in the Norwegian Sea, 1948–49. Hvalradets Skrifter (Scientific Results of Marine Biological Research), No. 40, 93 pp.

    Google Scholar 

  • REID J. L. JR. (1962) On the circulation, phosphate-phosphorus content and zooplankton volumes in the upper part of the Pacific Ocean. Limnology and Oceanography, 7(3), 287–306.

    Article  Google Scholar 

  • REID J. L. JR. (1965) Intermediate waters of the Pacific Ocean. The Johns Hopkins Oceanographic Studies, No.2, 85 pp., 32 figures.

    Google Scholar 

  • REID J. L. (1969) Sea-surface temperature, salinity, and density of the Pacific Ocean in summer and in winter. Deep-Sea Research, 16 (Supplement), 215–224.

    Google Scholar 

  • REID J. L. and R. S. ARTHUR (1975) Interpretation of maps of geopotential anomaly for the deep Pacific Ocean. Journal of Marine Research, 33 (Supplement), 37–52.

    Google Scholar 

  • REID J. L., W.D. NOWLIN, JR., W. C. PATZERT (in press) On the characteristics and circulation of the southwestern Atlantic Ocean. Journal of Physical Oceanography, 7.

    Google Scholar 

  • SCHOTT G. 1942 Geographie des Atlantischen Ozeans, C. Boysen, 438 pp., 27 tafeln.

    Google Scholar 

  • SIMONSEN R. and T. KANAYA (1961) Notes on the marine species of the diatom genus Denticula Kutz. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 46(4), 498–513.

    Article  Google Scholar 

  • SMAYDA T. J. (1958) Biogeographical studies of marine phytoplankton. Oikos, 9(2), 158–191.

    Article  Google Scholar 

  • SØMME J. D. (1933) Animal plankton and sea currents. American Naturalist, 67(708), 33–34, 42–43.

    Google Scholar 

  • SØMME J. D. (1934) Animal plankton of the Norwegian coast waters and the open sea. I. Production of Calanus finmarchicus (Gunner) and Calanus hyperboreus (Krøyer) in the Lofoten area. Fiskeridirektoratets Skrifter, Serie Havundersøkelser, 4(9), 163 pp.

    Google Scholar 

  • STEUER A. (1933) Zur planmässigen Erforschung der geographischen Verbreitung des Haliplanktons, besonders der Copepoden. Zoogeographica, 1(3), 269–302.

    Google Scholar 

  • SVERDRUP H. U. (1955) The place of physical oceanography in oceanographic research. Journal of Marine Research, 14(4), 287–294.

    Google Scholar 

  • SVERDRUP H. U., M. W. JOHNSON and R. H. FLEMING (1942) The oceans: their physics, chemistry and general biology, Prentice-Hall, 1087 pp.

    Google Scholar 

  • VAN DER SPOEL S. (1967) Euthecosomata — a group with remarkable developmental stages (Gastropoda, Pteropoda). J. Noorduijn En Zoon N.V., 375 pp.

    Google Scholar 

  • VENRICK E. L. (1971) Recurrent groups of diatom species in the North Pacific. Ecology, 52(4), 614–625.

    Article  Google Scholar 

  • VERVOORT W. (1965) Notes on the biogeography and ecology of free-living marine Copepoda. Monographiae Biologicae, 15, 381–400.

    Google Scholar 

  • VORONINA N. M. (1968) The distribution of zooplankton in the Southern Ocean and its dependence on the circulation of water. Sarsia, 34, 277–Z84.

    Google Scholar 

  • WIMPENNY R. S. (1966) The plankton of the sea, Faber and Faber, 425 pp.

    Google Scholar 

  • WYRTKI K. (1971) Oceanographic Atlas of the International Indian Ocean Expedition, The National Science Foundation, 531 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Reid, J.L., Brinton, E., Fleminger, A., Venrick, E.L., McGowan, J.A. (1978). Ocean Circulation and Marine Life. In: Charnock, H., Deacon, G. (eds) Advances in Oceanography. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8273-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8273-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8275-5

  • Online ISBN: 978-1-4615-8273-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics