Skip to main content

Chi Sites and Their Consequences

  • Chapter
Bacterial Genomes

Abstract

Chi sites are octameric nucleotide sequences in DNA that stimulate the Rec-BCD pathway of homologous recombination in Escherichia coli. Stimulation is maximal at the Chi site, decreases approximately a factor of two for each 2–3 kb to one side, but is insignificant to the other side of Chi. Chi stimulates recombination by interaction with RecBCD enzyme, which has multiple enzymatic activities and multiple physiological roles in recombination, repair, and replication. Chi appears to be active throughout the enteric bacteria; other nucleotide sequences may similarly interact with RecBCD-like enzymes in other bacteria. This chapter reviews the properties of Chi, its interaction with RecBCD enzyme, and its occurrence on the chromosome of E. coli and other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amundsen, S. K., A. F. Taylor, A. M. Chaudhury, and G. R. Smith. 1986. recD: The gene for an essential third subunit of exonuclease V. Proc. Natl. Acad. Sci. USA 83:5558–5562.

    Article  CAS  Google Scholar 

  • Amundsen, S. K., A. M. Neiman, S. M. Thibodeaux, and G. R. Smith. 1990. Genetic dissection of the biochemical activities of RecBCD enzyme. Genetics 126:25–40.

    PubMed  CAS  Google Scholar 

  • Asai, T., D. B. Bates, and T. Kogoma. 1994. DNA replication triggered by double-stranded breaks in E. coli: dependence on homologous recombination functions. Cell 78:1051–1061.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, I., E. Maguin, S. D. Ehrlich, and A. Gruss. 1995. A 7-base-pair sequence protects DNA from exonucleolytic degradation in Lactococcus lactis. Proc. Natl. Acad. Sci. USA 92:2244–2248.

    Article  PubMed  CAS  Google Scholar 

  • Blaisdell, B. E., K. E. Rudd, A. Matin, and S. Karlin. 1993. Significant dispersed recurrent DNA sequences in the Escherichia coli genome. J. Mol. Biol. 229:833–848.

    Article  PubMed  CAS  Google Scholar 

  • Blakely, G., S. Colloms, G. May, M. Burke, and D. Sherratt. 1991. Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New. Biol. 3:789–798.

    PubMed  CAS  Google Scholar 

  • Brewer, B. J. 1988. When polymerases collide: replication and the transcriptional organization of the Escherichia coli chromosome. Cell 53:679–686.

    Article  PubMed  CAS  Google Scholar 

  • Burland, V., G. Plunkett III, D. L. Daniels, and F. R. Blattner. 1993. DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: Organizational symmetry around the origin of replication. Genomics 16:551–561.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury, A. M., and G. R. Smith. 1984. A new class of Escherichia coli recBC mutants: Implications for the role of RecBC enzyme in homologous recombination. Proc. Natl. Acad. Sci. USA, 81:7850–7854.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, K. C., and G. R. Smith. 1984. Recombinational hotspot activity of Chi-like sequences. J. Mol. Biol. 180:371–377.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, K. C., and G. R. Smith. 1989. Distribution of Chi-stimulated recombinational exchanges and heteroduplex endpoints in phage lambda. Genetics 123:5–17.

    PubMed  CAS  Google Scholar 

  • Dabert, P., S. D. Ehrlich and A. Gruss. 1992. χ sequence protects against RecBCD degradation of DNA in vivo. Proc. Natl. Acad. Sci. USA 89:12073–12077.

    Article  PubMed  CAS  Google Scholar 

  • Dabert, P. and G. R. Smith. Gene Replacement with linear DNA fragments in wild-type Escherichia coli enhancement by Chi sites. Genetics, in press.

    Google Scholar 

  • Dewyse, P. and W. E. C. Bradley. 1991. A very large spontaneous deletion at aprt locus in CHO cells: sequence similarities with small aprt deletions. Somatic Cell and Molecular Genetics 17:57–68.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, D. A. and S. C. Kowalczykowski. 1991. Homologous pairing in vitro stimulated by the recombination hotspot, Chi. Cell 66:361–371.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, D. A. and S. C. Kowalczykowski. 1993. The recombination hotspot χ is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73:87–96.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, D. A. and S. C. Kowalczykowski. 1995. Role of the Escherichia coli recombination hotspot, χ, in RecABCD-dependent homologous pairing. J. Biol. Chem. 270:16360–16370.

    Article  PubMed  CAS  Google Scholar 

  • Dower, N. A. and F. W. Stahl. 1981. Chi activity during transduction-associated recombination. Proc. Natl. Acad. Sci. USA 78:7033–7037.

    Article  PubMed  CAS  Google Scholar 

  • Eggleston, A. K. and S. C. Kowalczykowski. 1993. Biochemical characterization of a mutant recBCD enzyme, the recB2109 CD enzyme, which lacks χ-specific, but not nonspecific, nuclease activity. J. Mol. Biol. 231:605–620.

    Article  PubMed  CAS  Google Scholar 

  • Faulds, D., N. Dower, M. M. Stahl, and F. W. Stahl. 1979. Orientation-dependent recombination hotspot activity in bacteriophage lambda. J. Mol. Biol. 131:681–695.

    Article  PubMed  CAS  Google Scholar 

  • Gillen, J. R. and A. J. Clark. 1974. The RecE pathway of bacterial recombination. In Mechanisms in Recombination, R. F. Grell, ed. pp. 123–126. Plenum Press, New York.

    Chapter  Google Scholar 

  • Hagemann, A. T. and S. M. Rosenberg. 1991. Chain bias in Chi-stimulated heteroduplex patches in the lambda ren gene is determined by the orientation of lambda cos. Genetics 129:611–621.

    PubMed  CAS  Google Scholar 

  • Henderson, D. and J. Weil. 1975. Recombination-deficient deletions in bacteriophage lambda and their interaction with Chi mutations. Genetics 79:143–174.

    PubMed  CAS  Google Scholar 

  • Holbeck, S. L. and G. R. Smith. 1992. Chi enhances heteroduplex DNA levels during recombination. Genetics 132:879–891.

    PubMed  CAS  Google Scholar 

  • Horiuchi, T., Y. Fujimura, H. Nishitani, T. Kobayashi, and M. Hidaka. 1994. The DNA replication fork blocked at the Ter site may be an entrance for the RecBCD enzyme into duplex DNA. J. Bacteriol. 176:4656–4663.

    PubMed  CAS  Google Scholar 

  • Jasin, M. and P. Schimmel. 1984. Deletion of an essential gene in Escherichia coli by site-specific recombination with linear DNA fragments. J. Bacteriol. 159:783–786.

    PubMed  CAS  Google Scholar 

  • Kalnins, A., K. Otto, U. Ruther, and B. Muller-Hill. 1983. Sequence of the lacZ gene of Escherichia coli. EMBO J. 2:593–597.

    PubMed  CAS  Google Scholar 

  • Kenter, A. L. and B. K. Birshtein. 1981. Chi, a promoter of generalized recombination in X phage, is present in immunoglobulin genes. Nature 293:402–404.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, I., M. M. Stahl, and F. W. Stahl. 1984. The mechanism of the Chi-cos interaction in RecA-RecBC-mediated recombination in phage lambda. Cold Spring Harbor Symp. Quant. Biol. 49:497–506.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, I., H. Murialdo, J. M. Crasemann, M. M. Stahl, and F. W. Stahl. 1982. Orientation of cohesive end site cos determines the active orientation of chi sequence in stimulating recA-recBC mediated recombination in phage lambda lytic infections. Proc. Natl. Acad. Sci. USA 79:5981–5985.

    Article  PubMed  CAS  Google Scholar 

  • Köppen, A., S. Krobitsch, B. Thorns, and W. Wackernagel. 1995. Interaction with the recombination hot spot χ in vivo converts the RecBCD enzyme of Escherichia coli into a χ-independent recombinase by inactivation of the RecD subunit. Proc. Natl. Acad. Sci. USA 92:6249–6253.

    Article  PubMed  Google Scholar 

  • Krowczynska, A. M., R. A. Rudders, and T. G. Krontiris. 1990. The human minisatellite consensus at breakpoints of oncogene translocations. Nucl. Acids Res. 18:1121–1127.

    Article  PubMed  CAS  Google Scholar 

  • Kuzminov, A., E. Schabtach, and F. W. Stahl. 1994. χ sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating exoV activity of RecBCD nuclease. EMBO J. 13:2764–2776.

    PubMed  CAS  Google Scholar 

  • Lam, S. T., M. M. Stahl, K. D. McMilin, and F. W. Stahl. 1974. Rec-mediated recombinational hotspot activity in bacteriophage lambda. II. A mutation which causes hotspot activity. Genetics 77:425–433.

    PubMed  CAS  Google Scholar 

  • Lieb, M. and S. Rehmat. 1995. Very short patch repair of T:G mismatches in vivo: Importance of context and accessory proteins. J. Bacteriol. 177:660–666.

    PubMed  CAS  Google Scholar 

  • Lloyd, R. G. and C. Buckman. 1995. Conjugational recombination in Escherichia coli: Genetic analysis of recombinant formation in Hfr × F- crosses. Genetics 139:1123–1148.

    PubMed  CAS  Google Scholar 

  • Lundblad, V., A. F. Taylor, G. R. Smith, and N. Kleckner. 1984. Unusual alleles of recB and recC stimulate excision of inverted repeat transposons Tn10 and Tn5. Proc. Natl. Acad. Sci. USA 81:824–828.

    Article  PubMed  CAS  Google Scholar 

  • Malone, R. E., D. K. Chattoraj, D.H. Faulds, M. M. Stahl, and F. W. Stahl. (1978). Hotspots for generalized recombination in the Escherichia coli chromosome. J. Mol. Biol. 121:473–491.

    Article  PubMed  CAS  Google Scholar 

  • McKittrick, N. H. and G. R. Smith. 1989. Activation of Chi recombinational hotspots by RecBCD-like enzymes from enteric bacteria. J. Mol. Biol. 210:485–495.

    Article  PubMed  CAS  Google Scholar 

  • McMilin, K. D., M. M. Stahl, and F. W. Stahl. 1974. Rec-mediated hotspot recombinational activity in bacteriophage lambda. I. Hot spot activity associated with spi deletions and bio substitutions. Genetics 77:409–423.

    PubMed  CAS  Google Scholar 

  • Myers, R. S., A. Kuzminov, and F. W. Stahl. 1995. The recombination hot spot χ activates RecBCD recombination by converting Escherichia coli to a recD mutant phenocopy. Proc. Natl. Acad. Sci. USA 92:6244–6248.

    Article  PubMed  CAS  Google Scholar 

  • Newman, B. J. and M. Masters. 1980. The variation in frequency with which markers are transduced by phage P1 is primarily a result of discrimination during recombination. Mol. Gen. Genet. 180:585–589.

    Article  PubMed  CAS  Google Scholar 

  • Nishitani, H., M. Hidaka, and T. Horiuchi. 1993. Specific chromosomal sites enhancing homologous recombination in Escherichia coli mutants defective in RNase H. Mol. Gen. Genet. 240:307–314.

    PubMed  CAS  Google Scholar 

  • Ponticelli, A. S., D. W. Schultz, A. F. Taylor, and G. R. Smith. 1985. Chi-dependent DNA strand cleavage by RecBC enzyme. Cell 41:145–151.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, S. M. 1987. Chi-stimulated patches are heteroduplex, with recombinant information on the phage lambda r chain. Cell 48:855–865.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, S. M. 1988. Chain-bias of Escherichia coli Rec-mediated lambda patch recombinants is independent of the orientation of lambda cos. Genetics 120:7–21.

    PubMed  CAS  Google Scholar 

  • Rüdiger, N. S., N. Gregersen, and M. C. Kielland-Brandt. 1995. One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucl. Acids Res. 23:256–260.

    Article  PubMed  Google Scholar 

  • Russell, C. B., D. S. Thaler, and F. W. Dahlquist. 1989. Chromosomal transformation of Escherichia coli recD strains with linearized plasmids. J. Bacteriol. 171:2609–2613.

    PubMed  CAS  Google Scholar 

  • Sanger, F., A. R. Coulson, G. F. Hong, D. F. Hill, and G. B. Petersen. 1982. Nucleotide sequence of bacteriophage lambda DNA. J. Mol. Biol. 162:729–773.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, D. W. and G. R. Smith. 1986. Conservation of Chi cutting activity in terrestrial and marine enteric bacteria. J. Mol. Biol. 189:585–595.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, D. W., A. F. Taylor, and G. R. Smith. 1983. Escherichia coli RecBC pseudore-vertants lacking Chi recombinational hotspot activity. J. Bacteriol. 155:664–680.

    PubMed  CAS  Google Scholar 

  • Shevell, D. E., A. M. Abou-Zamzam, B. Demple, and G. C. Walker. 1988. Construction of an Escherichia coli K-12 ada deletion by gene replacement in a recD strain reveals a second methyltransferase that repairs alkylated DNA. J. Bacteriol. 170:3294–3296.

    PubMed  CAS  Google Scholar 

  • Siddiqi, I., M. M. Stahl, and F. W. Stahl. 1991. Heteroduplex chain polarity in recombination of phage lambda by the Red, RecBCD, RecBC(D-) and RecF pathways. Genetics 128:7–22.

    PubMed  CAS  Google Scholar 

  • Smith, G. R. 1983. General recombination, in Lambda II. R. W. Hendrix, J. W. Roberts, F. W. Stahl and R. A. Weisberg, eds. pp. 175–209. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Smith, G. R. 1987. Mechanism and control of homologous recombination. Escherichia coli. Annu. Rev. Genet. 21:179–201.

    CAS  Google Scholar 

  • Smith, G. R. 1988. Homologous recombination sites and their recognition. In The Recombination of Genetic Material. pp. 115–154. B. Low, ed. Academic Press, New York.

    Google Scholar 

  • Smith, G. R. 1991. Conjugational recombination in E. coli: Myths and mechanisms. Cell 64:19–27.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. R. 1994. Hotspots of homologous recombination. Experientia 50:234–241.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. R., C. M. Roberts, and D. W. Schultz. 1986. Activity of Chi recombinational hotspots in Salmonella typhimurium. Genetics 112:429–439.

    PubMed  CAS  Google Scholar 

  • Smith, G. R., D. W. Schultz, A. F. Taylor, and K. Triman. 1981. Chi sites, RecBC enzyme, and generalized recombination. Stadler Genetics Symposium 13:25–37.

    CAS  Google Scholar 

  • Smith, G. R., S. K. Amundsen, A. M. Chaudhury, K. C. Cheng, A. S. Ponticelli, C. M. Roberts, D. W. Schultz, and A. F. Taylor. 1984. Roles of RecBC enzyme and Chi sites in homologous recombination. Cold Spring Harbor Symp. Cold Spring Harbor Symp. Quant Biol. 49:485–495.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. R., S. K. Amundsen, P. Dabert, and A. F. Taylor. 1995. The initiation and control of homologous recombination in Escherichia coli. Phil. Trans. R. Soc. London 347:13–20.

    Article  CAS  Google Scholar 

  • Stahl, F. W. 1979. Special sites in generalized recombination. Annu. Rev. Genet. 13:7–24.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, F. W., J. M. Crasemann, and M. M. Stahl. 1975. Rec-mediated recombinational hot spot activity in bacteriophage lambda. III. Chi mutations are site-mutations stimulating Rec-mediated recombination. J. Mol. Biol. 94:203–212.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, F.W. and M. M. Stahl. 1975. Rec-mediated recombinational hot spot activity in bacteriophage lambda. IV. Effect of heterology on Chi-stimulated crossing over. Mol. Gen. Genet. 140:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, F. W. and M. M. Stahl. 1977. Recombination pathway specificity of Chi. Genetics 86:715–725.

    PubMed  CAS  Google Scholar 

  • Stahl, F. W., M. M. Stahl, R. E. Malone, and J. M. Crasemann. 1980. Directionality and nonreciprocality of Chi-stimulated recombination in phage lambda. Genetics 94:235–248.

    PubMed  CAS  Google Scholar 

  • Sutcliffe. J. G. 1979. Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symp. Quant. Biol. 43:77–90.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A. F. 1988. RecBCD enzyme of Escherichia coli, in Genetic Recombination, R. Kucherlapati and G. R. Smith, eds. pp. 231–263. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Taylor, A. F. and G. R. Smith. 1992. RecBCD enzyme is altered upon cutting DNA at a Chi recombination hotspot. Proc. Natl. Acad. Sci. USA 89:5226–5230.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A. F. and G. R. Smith. 1995. Monomeric RecBCD enzyme binds and unwinds DNA. J. Biol. Chem. 270:24451–24458.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A. F. and G. R. Smith. 1995b. Strand specificity of nicking of DNA at Chi sites by RecBCD enzyme: modulation by ATP and magnesium levels. J. Biol. Chem. 270:24459–24467.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A. F., D. W. Schultz, A. S. Ponticelli, and G. R. Smith. 1985. RecBC enzyme nicking at Chi sites during DNA unwinding: Location and orientation dependence of the cutting. Cell 41:153–163.

    Article  PubMed  CAS  Google Scholar 

  • Thaler, D. S., E. Sampson, I. Siddiqi, S. M. Rosenberg, F. W. Stahl, and M. Stahl. 1988. A hypothesis: Chi-activation of RecBCD enzyme involves removal of the RecD subunit, in Mechanisms and Consequences of DNA Damage Processing. E. Friedberg and P. Hanawalt, eds. pp. 413–422. Alan R. Liss, New York.

    Google Scholar 

  • Triman, K. L., D. K. Chattoraj, and G. R. Smith. 1982. Identity of a Chi site of Escherichia coli and Chi recombinational hotspots of bacteriophage lambda. J. Mol. Biol. 154:393–399.

    Article  PubMed  CAS  Google Scholar 

  • Wahls, W. P., G. Swenson, and P. D. Moore. 1991. Two hypervariable minisatellite DNA binding proteins. Nucl. Acids Res. 19:3269–3274.

    Article  PubMed  CAS  Google Scholar 

  • Wahls, W. P., L. J. Wallace, and P. D. Moore. 1990. Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 60:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Weichenhan, D. and W. Wackernagel. 1989. Functional analyses of Proteus mirabilis wild-type and mutant RecBCD enzymes in Escherichia coli reveal a new mutant phenotype. Mol. Microbiol. 3:1777–1784.

    Article  PubMed  CAS  Google Scholar 

  • Winans, S. C., S. J. Elledge, J. H. Krueger, and G. C. Walker. 1985. Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J. Bacteriol. 161:1219–1221.

    PubMed  CAS  Google Scholar 

  • Wyatt, R. T., R. A. Rudders, A. Zelenetz, R. A. Delellis, and T. G. Krontiris. 1992. BCL2 oncogene translocation is mediated by a χ-like consensus. J. Exp. Med. 175:1575–1588.

    Article  PubMed  CAS  Google Scholar 

  • Zaman, M. M. and T. C. Boles. 1994. Chi-dependent formation of linear plasmid DNA in exonuclease-deficient recBCD + strains of Escherichia coli. J. Bacteriol. 176:5093–5100.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, G.R. (1998). Chi Sites and Their Consequences. In: de Bruijn, F.J., Lupski, J.R., Weinstock, G.M. (eds) Bacterial Genomes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6369-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6369-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7925-6

  • Online ISBN: 978-1-4615-6369-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics