Skip to main content
Log in

A very large spontaneous deletion ataprt locus in CHO cells: Sequence similarities with smallaprt deletions

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Spontaneous deletion mutants can be isolated from CHO cell lines heterozygous at the adenine phosphoribosyltransferase locus at frequencies up to 10−4, i.e., about 100-fold higher than spontaneous point mutations. Indirect evidence has suggested that most deletions were in the megabase range. We have fully characterized one such mutant, Del 155, and shown that it resulted from an illegitimate recombination that took place between overlapping tetranucleotides. Comparisons with sequences of other deletions at various loci revealed a number of similarities, most striking of which was a CHI-like motif found within 6 bp of the upstream breakpoint of Del 155 and breakpoints of 8/21 previously described short deletions at the CHO aprt locus. Homology also existed between the downstream breakpoint of Del 155 and breakpoints of retinoblastoma gene deletions (3/6 cases) and also a 20-bp stretch of an Alu sequence in which breakpoints at the low-density lipoprotein receptor locus have been shown to cluster. The magnitude of the deletion event in Del 155 was assessed by pulsed field (PF) gel analysis and found to be at least 2100 kb long. PF analysis also indicated that the downstream breakpoint was near a region of structural differences between the two chromosomes carrying aprt. These structural differences were probably not implicated in the mechanism of the high frequency event, since no indication of breakpoint clustering among a large collection of mutants was found either by conventional or PF electrophoretic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Den Dunne, J.T., Grootscholten, P.M., Bakker, E., Blonden, L.A.J., Ginjaar, H.B., Wapenaar, M.C., Van Paassen, H.M.B., Van Broeckhoven, C., Pearsen, P.L., and Van Ommen, G.J.B. (1989).Am. J. Hum. Genet. 45835–847.

    PubMed  Google Scholar 

  2. Gillard, E.F., Chamberlain, J.S., Murphy, E.G., Duff, C.L., Smith, B., Burghes, A.H.M., Thompson, M.W., Sutherland, J., Oss, I., Bodrug, S.E., Klamut, H.J., Ray, P.N., and Worton, R.G. (1989).Am. J. Hum. Genet. 45507–520.

    PubMed  Google Scholar 

  3. Gillard, E.F., Affara, N.A., Yates, J.R.W., Goudie, D.R., Lambert, J., Aitken, D.A., and Ferguson-Smith, M.A. (1987).Nucleic Acids Res. 153977–3985.

    PubMed  Google Scholar 

  4. Yen, P.H., Allen, E., Marsh, B., Mohandas, T., Wang, N., Taggart, R.T., and Shapiro, L.J. (1987).Cell 49443–454.

    PubMed  Google Scholar 

  5. Friend, S.H., Bernards, R., Rogelj, S., Weinberg, R.A., Rapaport, J.M., Albert, D.M., and Dryja, T.P. (1986).Nature 323643–646.

    PubMed  Google Scholar 

  6. Friend, S.H., Horowitz, J.M., Gerber, M.R., Wang, X.F., Bogenmann, E., Li, F.P., and Weinberg, R.A. (1987).Proc. Natl. Acad. Sci. U.S.A. 849059–9063.

    PubMed  Google Scholar 

  7. Fung, Y.K.T., Murphree, A.L., Tang, A., Qian, J., Hinrichs, S.H., and Benedict, W.F. (1987).Science 2361657–1661.

    PubMed  Google Scholar 

  8. Goddard, A.D., Balakier, H., Canton, M., Dunn, J., Squire, J., Reyes, E., Becher, A., Phillips, R.A., and Gallie, B.L. (1988).Mol. Cell. Biol. 82082–2088.

    PubMed  Google Scholar 

  9. Whang-Peng, J., Bunn, P.A., Kao-Shan, C.S., Lee, E.C., Carney, D.N., Gazdar, A., and Minna, J.D. (1982).Cancer Genet. Cytogenet. 6119–134.

    PubMed  Google Scholar 

  10. Dewyse, P., and Bradley, W.E.C. (1989).Somat. Cell Mol. Genet. 1519–28.

    PubMed  Google Scholar 

  11. Adair, G.M., Stallings, R.L., Nairn, R.S., and Siliciano, M.J. (1983).Proc. Natl. Acad. Sci. U.S.A. 805961–5964.

    PubMed  Google Scholar 

  12. Bradley, W.E.C., and Letovanec, D. (1982).Somat. Cell Genet. 851–66.

    PubMed  Google Scholar 

  13. Simon, A.E., and Taylor, M.W. (1983).Proc. Natl. Acad. Sci. U.S.A. 80810–814.

    PubMed  Google Scholar 

  14. Simon, A.E., Taylor, M.W., and Bradley, W.E.C. (1983).Mol. Cell. Biol. 31703–1710.

    PubMed  Google Scholar 

  15. Siciliano, M.J., Stallings, R.L., and Adair, G.M. (1985). InMolecular Cell Genetics (ed.), Gottesman, M.M. Wiley, New York. pp. 95–135.

    Google Scholar 

  16. Worton, R.G., Ho, C.C., and Duff, C. (1977).Somat. Cell Genet. 327–45.

    PubMed  Google Scholar 

  17. Monaco, A.P., and Kunkel, L.M. (1987).Trends Genet. 333–37.

    Google Scholar 

  18. Hansen, M.F., and Cavenee, W.K. (1988).Trends Genet. 4125–128.

    PubMed  Google Scholar 

  19. Bradley, W.E.C., Belouchi, A., and Messing, K. (1988).Mutat. Res. 199199–131.

    PubMed  Google Scholar 

  20. Dewyse, P., and Bradley, W.E.C. (1990).Somat. Cell Mol. Genet. 16225–230.

    PubMed  Google Scholar 

  21. Sager, R., and Kovac, P.E. (1978).Somat. Cell Genet. 4375–392.

    PubMed  Google Scholar 

  22. Roufa, D.J., Sadow, B.N., and Caskey, C.T. (1973).Genetics 75515–530.

    PubMed  Google Scholar 

  23. Murray, N. (1983). InLambda II (eds.) Hendrix, R., Roberts, J., Stahl, F., and Weisberg, R. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York). pp. 395–432.

    Google Scholar 

  24. Maniatis, T., Fritsch, E.F., and Stambrook, J. (1982). Molecular Cloning. A Laboratory Manual. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

    Google Scholar 

  25. Benton, W.D., and Davis, R.W. (1977).Science 196180–182.

    PubMed  Google Scholar 

  26. Riley, D.E. (1989).Gene 75193–196.

    PubMed  Google Scholar 

  27. Zhang, H., Scholl, R., Browse, J., and Somerville, C. (1988).Nucleic Acids Res. 161220.

    PubMed  Google Scholar 

  28. Schwartz, D.C., and Cantor, C.R. (1984).Cell 3767–75.

    PubMed  Google Scholar 

  29. Fasel, N., Buetti, E., Firzlaff, J., Pearson, K., and Diggelmann, H. (1983).Nucleic Acids Res. 116943–6955.

    PubMed  Google Scholar 

  30. Fowler, R.F., Stringfellow, L.A., and Skinner, D.M. (1988).Gene 71165–176.

    PubMed  Google Scholar 

  31. Cockerill, P.N., and Garrard, W.T. (1986).Cell 44273–282.

    PubMed  Google Scholar 

  32. Been, M.D., Burgess, R.R., and Champoux, J.J. (1984).Nucleic Acids Res. 123097–3114.

    PubMed  Google Scholar 

  33. Smith, G.R., Kunes, S.M., Schultz, D.W., Taylor, A., and Triman, K.L. (1981).Cell 24429–436.

    PubMed  Google Scholar 

  34. Krowczynska, A.M., Rudders, R.A., and Krontiris, T.G. (1990).Nucleic Acids Res. 181121–1127.

    PubMed  Google Scholar 

  35. Meuth, M. (1989). InMobile DNA, (eds.) Berg, D.E., and Howe, M.M. (Washington, D.C.), pp. 833–860. American Society of Microbiology.

  36. Sargent, G., Phear, G., and Meuth, M. (1989).New Biol. 1205–213.

    PubMed  Google Scholar 

  37. Nalbantoglu, J., Hartley, D., Phear, G., Tear, G., and Meuth, M. (1986).EMBO J. 51199–1204.

    PubMed  Google Scholar 

  38. Phear, G., Armstrong, W., and Meuth, M. (1989).J. Mol. Biol. 209577–582.

    PubMed  Google Scholar 

  39. Nalbantoglu, J., Miles, C., and Meuth, M. (1988).J. Mol. Biol. 200449–459.

    PubMed  Google Scholar 

  40. Bookstein, R., Lee, E., Peccei, A., and Lee, W.-H. (1989).Mol. Cell. Biol. 91628–1634.

    PubMed  Google Scholar 

  41. Canning, S., and Dryja, T.P. (1989).Proc. Natl. Acad. Sci. U.S.A. 865044–5048.

    PubMed  Google Scholar 

  42. Lee, E., Bookstein, R., Young, L.-J., Lin, S.-J., Rosenfeld, M.G., and Lee, W.-H. (1988).Proc. Natl. Acad. Sci. U.S.A. 856017–6021.

    PubMed  Google Scholar 

  43. Lehrman, M.A., Goldstein, J.L., Russell, D.W., and Brown, M.S. (1987).Cell 48827–835.

    PubMed  Google Scholar 

  44. De Jong, P.J., Grosovsky, A.J., and Glickman, B.W. (1988).Proc. Natl. Acad. Sci. U.S.A. 853499–3503.

    PubMed  Google Scholar 

  45. Nalbantoglu, J., and Meuth, M. (1986).Nucleic Acids Res. 148361–8371.

    PubMed  Google Scholar 

  46. Nalbantoglu, J., Phear, G., and Meuth, M. (1987).Mol. Cell. Biol. 71445–1449.

    PubMed  Google Scholar 

  47. Jennings, M.W., Jones, R.W., Wood, W.G., and Weatherall, D.J. (1985).Nucleic Acids Res. 132897–2906.

    PubMed  Google Scholar 

  48. Vnencak-Jones, C.L., Phillips, J.A., III, Chen, E.Y., and Seeburg, P.H. (1988).Proc. Natl. Acad. Sci. U.S.A. 855615–5619.

    PubMed  Google Scholar 

  49. Mendoza, A.U., Chuw, J.Y., Lee, E., Bookstein, R., and Lee, W.-H. (1988).Hum. Pathol. 19487–489.

    PubMed  Google Scholar 

  50. Myerowitz, R., and Hogikyan, N.D. (1987).J. Biol. Chem. 26215396–15399.

    PubMed  Google Scholar 

  51. Henthorn, P.S., Smithies, O., and Mager, D.L. (1990).Genomics 6226–237.

    PubMed  Google Scholar 

  52. Konopka, A.K. (1988).Nucleic Acids Res. 161739–1758.

    PubMed  Google Scholar 

  53. Gasser, S.M., and Laemmli, U.K. (1987).Trends Genet. 317–21.

    Google Scholar 

  54. Gasser, S.M., and Laemmli, U.K. (1986).Cell 46521–530.

    PubMed  Google Scholar 

  55. Sander, M., and Hsieh, T. (1985).Nucleic Acids Res. 131057–1072.

    PubMed  Google Scholar 

  56. Nikaido, T., Nakai, S., and Honjo, T. (1981).Nature 292845–848.

    PubMed  Google Scholar 

  57. Majors, J.E., and Varmus, H.E. (1981).Nature 289253–257.

    PubMed  Google Scholar 

  58. Squires, C.H., DeFelice, M., Devereux, J., and Calvo, J.M. (1983).Nucleic Acids Res. 115299–5313.

    PubMed  Google Scholar 

  59. Lehrman, M.A., Russell, D.W., Goldstein, G.L., and Brown, M.S. (1987).J. Biol. Chem. 2623354–3362.

    PubMed  Google Scholar 

  60. Lehrman, M.A., Schneider, W.J., Sudhof, T.S., Brown, M.S., Goldstein, G.L., and Russell, D.W. (1985).Science 227140–146.

    PubMed  Google Scholar 

  61. Lehrman, M.A., Russell, D.W., Goldstein, G.L., and Brown, M.S. (1986).Proc. Natl. Acad. Sci. U.S.A. 833679–3683.

    PubMed  Google Scholar 

  62. Vanin, E.F., Henthorn, P.S., Kioussis, D., Grosveld, F., and Smithies, O. (1984).Cell 35701–709.

    Google Scholar 

  63. Nicholls, R.D., Fishel-Ghodsian, N., and Higgs, D.R. (1987).Cell 49369–378.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewyse, P., Bradley, W.E.C. A very large spontaneous deletion ataprt locus in CHO cells: Sequence similarities with smallaprt deletions. Somat Cell Mol Genet 17, 57–68 (1991). https://doi.org/10.1007/BF01233205

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233205

Keywords

Navigation