Skip to main content

Abstract

Highly reactive oxidants such as the hydroxyl radical are generally assumed to cause random cellular damage, which presumably results in cellular necrosis. However, signal transduction pathways in cells respond to many extracellular signals including oxidative stress. Oxidants have now been implicated in activating apoptosis, suggesting that cells respond to a certain threshold of oxidative stress by activating cell death pathways. Coordination of the complex and interlocking signaling pathways in eukaryotic cells is essential for proliferation, differentiation, and cell death. Biological oxidants can both activate and inactivate signaling pathways involving tyrosine kinases, transcription factors,1,2 oxidation of key cellular thiols,3 and calcium homeostasis. Depending on the interplay between intracellular signaling pathways, moderate exposure to certain oxidants may either promote cell proliferation, induce apoptosis, or cause frank necrosis. Oxidants produced during inflammation are critical for defense against foreign invasion, but are also likely to interact with growth factors and cytokines in a more elusive and poorly understood role in the initiation of wound healing and repair of tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Meyer, M., R. Schreck, and P. A. Baeuerle. 1993. H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 12: 2005–2015.

    PubMed  CAS  Google Scholar 

  2. Brumell, J. H., A. L. Burkhardt, J. B. Bolen, and S. Grinstein. 1996. Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils. J. Biol. Chem. 271: 1455–1461.

    Article  PubMed  CAS  Google Scholar 

  3. Orrenius, S., M. J. Burkitt, G. E. N. Kass, J. M. Dypbukt, and P. Nicotera. 1992. Calcium ions and oxidative cell injury. Ann. Neurol. 32: S33–S42.

    Article  PubMed  CAS  Google Scholar 

  4. Beckman, J. S. 1991. The double edged role of nitric oxide in brain function and superoxide-mediated pathology. J. Devel. Physiol. 15: 53–59.

    CAS  Google Scholar 

  5. Dawson, V. L., T. M. Dawson, E. D. London, D. S. Bredt, and S. H. Snyder. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88: 6368–6371.

    Article  PubMed  CAS  Google Scholar 

  6. Ischiropoulos, H., L. Zhu, and J. S. Beckman. 1992. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298: 446–451.

    Article  PubMed  CAS  Google Scholar 

  7. Matheis, G., M. P. Sherman, G. D. Buckberg, D. M. Haybron, H. H. Young, and L. J. Ignarro. 1992. Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am. J. Physiol. 262: H616–H620.

    PubMed  CAS  Google Scholar 

  8. Tarpey, M. M., J. S. Beckman, H. Ischiropoulos, J. S. Gore, and T. A. Brock. 1995. Peroxynitrite stimulates vascular smooth muscle cell cyclic GMP synthesis. FEBS Lett. 364: 314–318.

    Article  PubMed  CAS  Google Scholar 

  9. Palmer, R. M. J., D. S. Ashton, and S. Moncada. 1988. Arginine is the source of endothelial-derived nitric oxide. Nature (London) 333: 664–666.

    Article  CAS  Google Scholar 

  10. Ignarro, L. J., J. B. Adams, P. M. Horwitz, and K. S. Wood. 1986. Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. J. Biol. Chem. 261: 4997–5002.

    PubMed  CAS  Google Scholar 

  11. Nairn, A. C., and P. Greengard. 1983. Cyclic GMP-dependent protein phosphorylatin in mammalian brain. Fed. Proc. 42: 3107–3113.

    PubMed  CAS  Google Scholar 

  12. Robertson, B. E., R. Schubert, J. Hescheler, and M. T. Nelson. 1993. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am. J. Physiol. 265: C299–C303.

    PubMed  CAS  Google Scholar 

  13. Moncada, S., A. G. Herman, and P. M. Vanhouette. 1987. Endothelium-derived relaxing factor is identified as nitric oxide. Trends Pharmacol. Sci. 8: 365–368.

    Article  Google Scholar 

  14. Ignarro, L. J. 1990. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu. Rev. Pharmacol. Toxicol. 30: 535–560.

    Article  PubMed  CAS  Google Scholar 

  15. Shibuki, K., and D. Okada. 1991. Endogenous nitric oxide release required for longterm synaptic depression in the cerebellum. Nature (London) 349: 326–329.

    Article  CAS  Google Scholar 

  16. Dinerman, J. L., T. M. Dawson, M. J. Schell, A. Snowman, and S. H. Snyder. 1994. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc. Natl Acad. Sci. USA 91: 4214–4218.

    Article  PubMed  CAS  Google Scholar 

  17. Hibbs, J. B., Jr., R. R. Taintor, and Z. Vavrin. 1987. Macrophage cytotoxicity: Role of L-arginine deminiase and imino nitrogen oxidation to nitrite. Science 235: 173–235.

    Article  Google Scholar 

  18. Hibbs, J. B., Jr., R. R. Taintor, Z. Vavrin, and E. M. Rachlin. 1988. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157: 87–94.

    Article  PubMed  CAS  Google Scholar 

  19. Nowicki, J. P., D. Duval, H. Poignet, and B. Scatton. 1991. Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Fur. J. Pharmacol. 204: 339–340.

    CAS  Google Scholar 

  20. Chen, J., K. A. Conger, M. J. Tan, and J. S. Beckman. 1994. Nitroarginine reduces infarction after middle cerebral artery occlusion in rats, pp. 264–272. In A. Hartman, F. Yatsu, and W. Kuschinsky (eds.), Cerebral Ischemia and Basic Mechanisms, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  21. Lafon-Cazal, M., M. Culcasi, F. Gaven, S. Pietri, and J. Bockaert. 1993. Nitric oxide, Superoxide and peroxynitrite: putative mediator of NMDA-induced cell death in cerebellar granule cells. Neuropharmacology 32: 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  22. Lafon-Cazal, M., S. Pietri, M. Culcasi, and J Bockaert. 1993. NMDA-dependent Superoxide production and neurotoxicity. Nature 364: 535–537.

    Article  PubMed  CAS  Google Scholar 

  23. Pryor, W. A., and J. W. Lightsey. 1981. Mechanisms of nitrogen dioxide reactions: initiation of lipid peroxidation and the production of nitrous acid. Science 214: 435–437.

    Article  PubMed  CAS  Google Scholar 

  24. Pryor, W. A., D. F. Church, C. K. Govindan, and G. Crank. 1982. Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications. J. Org. Chem. 147: 156–158.

    Article  Google Scholar 

  25. Priitz, W. A., H. Mönig, J. Butler, and E. J. Land. 1985. Reactions of nitrogen dioxide in aqueous model systems: oxidation of tyrosine units in peptides and proteins. Arch. Biochem. Biophys. 243: 125–134.

    Article  Google Scholar 

  26. Wink, D. A., R. W. Nims, J. F. Darbyshire, D. Christodoulou, I. Hanbauer, G. W. Cox, F. Laval, J. Laval, J. A. Cook, M. C. Krishna, W. G. DeGraff, and J. B. Mitchell. 1994. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem. Res. Toxicol. 7: 519–525.

    Article  PubMed  CAS  Google Scholar 

  27. Sawyer, D. T., and J. Valentine. 1981. How super is Superoxide? Acct. Chem. Res. 14: 393–400.

    Article  CAS  Google Scholar 

  28. Fridovich, I. 1986. Biological effects of the Superoxide radical. Arch. Biochem. Biophys. 247: 1–11.

    Article  PubMed  CAS  Google Scholar 

  29. McCord, J. M., and I. Fridovich. 1969. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049–6055.

    PubMed  CAS  Google Scholar 

  30. Klug, D., J. Rabani, and I. Fridovich. 1972. A direct demonstration of the catalytic action of Superoxide dismutase through the use of pulse radiolysis. J. Biol. Chem. 247: 4839–4842.

    PubMed  CAS  Google Scholar 

  31. Shibuki, K. 1990. An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci. Res. 9: 69–76.

    Article  PubMed  CAS  Google Scholar 

  32. Malinski, T., F. Bailey, Z. G. Zhang, and M. Chopp. 1993. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 13: 355–358.

    Article  PubMed  CAS  Google Scholar 

  33. Beckman, J. S., T. W. Beckman, J. Chen, P. M. Marshall, and B. A. Freeman. 1990. Apparent hydroxyl radical production from peroxynitrite: implications for endothelial injury by nitric oxide and Superoxide. Proc. Natl. Acad. Sci. USA 87: 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  34. Koppenol, W. H., J. J. Moreno, W. A. Pryor, H. Ischiropoulos, and J. S. Beckman. 1992. Peroxynitrite: a cloaked oxidant formed by nitric oxide and Superoxide. Chem. Res. Toxicol. 5: 834–842.

    Article  PubMed  CAS  Google Scholar 

  35. Radi, R., J. S. Beckman, K. M. Bush, and B. A. Freeman. 1991. Peroxynitritemediated sulfhydryl oxidation: the cytotoxic potential of Superoxide and nitric oxide. J. Biol. Chem. 266: 4244–4250.

    PubMed  CAS  Google Scholar 

  36. Kosower, N. S. 1978. The glutathione status of cells. Int. Rev. Cytol. 54: 109–160.

    Article  PubMed  CAS  Google Scholar 

  37. Reed, D. J. 1990. Glutathione: toxicological implications. Annu. Rev. Pharmacol. Toxicol. 30: 603–631.

    Article  PubMed  CAS  Google Scholar 

  38. Beckman, J. S., Y. Z. Ye, P. Anderson, J. Chen, M. A. Accavetti, M. M. Tarpey, and C. R. White. 1994. Extensive nitration of protein tyrosines observed in human atherosclerosis detected by immunohistochemistry. Biol. Chem. Hoppe-Seyler 375: 81–88.

    Article  Google Scholar 

  39. Ye, Y. Z., M. Strong, Z.-Q. Huang and J. S. Beckman. 1996. Antibodies that recognize nitrotyrosine. Methods Enzymol. 269: 201–209.

    Article  PubMed  CAS  Google Scholar 

  40. Haddad, I., G. Pataki, P. Hu, C. Galliani, J. S. Beckman, and S. Matalon. 1994. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J. Clin. Invest. 94: 2407–2413.

    Article  PubMed  CAS  Google Scholar 

  41. Zhu, L., C. Gunn, and J. S. Beckman. 1992. Bactericidal activity of peroxynitrite. Arch. Biochem. Biophys. 298: 452–457.

    Article  PubMed  CAS  Google Scholar 

  42. Radi, R., P. Cosgrove, J. S. Beckman and B. A. Freeman. 1993. Peroxynitriteinduced luminol chemiluminescence. Biochem. J. 290: 51–57.

    PubMed  CAS  Google Scholar 

  43. Lymar, S. V., and J. K. Hurst. 1995. Rapid reaction between peroxonitrite ion and carbon dioxide: implications for biological activity. J. Am. Chem. Soc. 111: 8867–8868.

    Article  Google Scholar 

  44. Uppu, R. M., G. L. Squadrito, and W. A. Pryor. 1996. Acceleration of peroxynitrite oxidations by carbon dioxide. Arch. Biochem. Biophys. 327: 335–343.

    Article  PubMed  CAS  Google Scholar 

  45. Lymar, S. V., Q. Jiang, and J. K. Hurst. Mechanism of carbon dioxide catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry. 35: 7855–7861.

    Google Scholar 

  46. Denicola, A., B. A. Freeman, M. Trujillo and R. Radi. 1996. Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influences on peroxynitrite-mediated oxidations. Arch. Biochem. Biophys. 333: 49–58.

    Article  PubMed  CAS  Google Scholar 

  47. Beckman. J. S., H. Ischiropoulos, L. Zhu, M. van der Woerd, C. Smith, J. Chen, J. Harrison, J. C. Martin, and M. Tsai. 1992. Kinetics of Superoxide dismutase and iron catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 298: 438–445.

    Article  PubMed  CAS  Google Scholar 

  48. Ischiropoulos, H., L. Zhu, J. Chen, H. M. Tsai, J. C. Martin, C. D. Smith, and J. S. Beckman. 1992. Peroxynitrite-mediated tyrosine nitration catalyzed by Superoxide dismutase. Arch. Biochem. Biophys. 298: 431–437.

    Article  PubMed  CAS  Google Scholar 

  49. Dawson, V., T. Dawson, D. Bartley, G. Uhl, and S. Snyder. 1993. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13: 2651–2661.

    PubMed  CAS  Google Scholar 

  50. Lipton, S. A., Y. B. Choi, Z. H. Pan, S. Z. Lei, H. S. V. Chen, N. J. Sucher, J. Loscalzo, D. J. Singel, and J. S. Stamler. 1993. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds. Nature 364: 626–631.

    Article  PubMed  CAS  Google Scholar 

  51. Bonfoco, E., D. Krainc, M. Ankarcrona, P. Nicotera, and S. A. Lipton. 1995. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl Acad. Sci. USA 92:7162–7166.

    Article  PubMed  CAS  Google Scholar 

  52. Estévez, A. G., R. Radi, L. Barbeito, J. T. Shin, J. A. Thompson, and J. S. Beckman. 1995. Peroxynitrite-induced cytotoxicity in PC12 cells: evidence for an apoptotic mechanism differentially modulated by neurotrophic factors. J. Neurochem. 65:1543–1550.

    Article  PubMed  Google Scholar 

  53. Lin, K.-T., J.-Y. Xue, M. Nomen, B. Spur, and P.Y.-K. Wong. 1995. Peroxynitriteinduced apoptosis in HL-60 cells. J. Biol. Chem. 270:16487–16490.

    Article  PubMed  CAS  Google Scholar 

  54. Raff, M. C., B. A. Barres, J. F. Burne, H. S. Coles, Y. Ishizaki, and M. D. Jacobson. 1993. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262:695–700.

    Article  PubMed  CAS  Google Scholar 

  55. Williams, G. T. 1991. Programmed cell death: apoptosis and oncogenesis. Cell 65:1097–1098.

    Article  PubMed  CAS  Google Scholar 

  56. Vaux, D. L., G. Haecker, and A. Strasser. 1994. An evolutionary perspective on apoptosis. Cell 76:117–119.

    Article  Google Scholar 

  57. Kerr, J. F. R., C. M. Winterford, and B. V. Harmon. 1994. Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013–2026.

    Article  PubMed  CAS  Google Scholar 

  58. Wyllie, A. H., M. J. Arends, R. G. Morris, S. W. Walker, and G. Evan. 1992. The apoptosis endonuclease and its regulation. Semin. Immunol. 4:389–397.

    PubMed  CAS  Google Scholar 

  59. Searle, J., T. A. Lawson, P. J. Abbott, B. Harmon, and J. F. R. Kerr. 1975. An electron-microscope study of the mode of cell death induced by cancer-chemotherapeutic agents in populations of proliferating normal and neoplastic cells. J. Pathol. 116:129–138.

    Article  PubMed  CAS  Google Scholar 

  60. Kyprianou, N., H. F. English, N. E. Davidson, and J. T. Isaacs. 1991. Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res. 51:162–166.

    PubMed  CAS  Google Scholar 

  61. Stephens, L. C., K. K. Ang, T. E. Schultheiss, L. Milas, and R. E. Meyn. 1991. Apoptosis in irradiated murine tumors. Radiat. Res. 127:308–316.

    Article  PubMed  CAS  Google Scholar 

  62. Greene, L. A., and A. S. Tischler. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424–2428.

    Article  PubMed  CAS  Google Scholar 

  63. Rydel, R. E., and L. A. Greene. 1987. Acidic and basic fibroblast growth factors promote stable neurite outgrowth and neuronal differentiation in cultures of PC12 cells. J. Neurosci. 7:3639–3653.

    PubMed  CAS  Google Scholar 

  64. Kaplan, D. R., D. Martin-Zance, and L. F. Parada. 1991. Tyrosine phosphorylatin and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350:158–160.

    Article  PubMed  CAS  Google Scholar 

  65. Obermeier, A., R. A. Bradshaw, K. Seedorf, A. Choidas, J. Schlessinger, and A. Ullrich. 1994. Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLC-γ. EMBO J. 13:1585–1590.

    PubMed  CAS  Google Scholar 

  66. Muroya, K., S. Hattori, and S. Nakamura. 1992. Nerve growth factor induces rapid accumulation of the GTP-bound form of P21ras in rat pheochromocytoma PC12 cells. Oncogene 7:277–281.

    PubMed  CAS  Google Scholar 

  67. Soltoff, S. P., S. L. Rabin, L. C. Cantley, and D. R. Kaplan. 1992. Nerve growth factor promotes the activation of phosphatidylinositol 3-kinase and its association with the trk tyrosine kinase. J. Biol Chem. 267: 11412–17411.

    Google Scholar 

  68. Blumberg, D., M. J. Radeke, and S. C. Feinstein. 1995. Specificity of nerve growth factor signaling: differential patterns of early tyrosine phosphorylation events induced by NGF, EGF, and bFGF. J. Neurosci. Res. 41: 628–639.

    Article  PubMed  CAS  Google Scholar 

  69. Kimura, K., S. Hattori, Y. Kabuyama, Y. Shizawa, J. Takayanagi, S. Nakamura, S. Toki, Y. Matsuda, K. Onodera, and Y. Fukui. 1994. Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. J. Biol. Chem. 269: 18961–18967.

    PubMed  CAS  Google Scholar 

  70. Yao, R., and G. M. Cooper. 1995. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267: 2003–2006.

    Article  PubMed  CAS  Google Scholar 

  71. Raffioni, S., and R. A. Bradshaw. 1992. Activation of phosphatidylinositol 3-kinase by epidermal growth factor, basic fibroblast growth factor, and nerve growth factor in PC12 pheochromocytoma cells. Proc. Natl. Acad. Sci. USA 89: 9121–9125.

    Article  PubMed  CAS  Google Scholar 

  72. Wang, J.-K., G. Gao, and M. Goldfarb. 1994. Fibroblast growth factor receptors have different signaling and mitogenic potentials. Mol. Cell. Biol. 14: 181–188.

    PubMed  CAS  Google Scholar 

  73. Abate, C., L. Patel, I. F. J. Rauscher, and T. Curran. 1990. Redox regulation of Fos and Jun DNA-binding. Science 249: 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  74. Clairborne, A., H. Miller, D. Parsonage and R. P. Ross. 1993. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB. 7: 1483–1490.

    Google Scholar 

  75. Storz, G., L. A. Tartaglia and B. N. Ames. 1990. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science. 248: 189–194.

    Article  PubMed  CAS  Google Scholar 

  76. Rouault, T. A. and R. D. Klausner. 1996. Iron-sulfur clusters as biosensors of oxidants and iron. TIBS. 21: 174–177.

    PubMed  CAS  Google Scholar 

  77. Hidalgo, E., J. M. Bollinger, Jr., T. M. Bradley, C. T. Walsh and B. Demple. 1995. Binuclear [2Fe-2S] clusters in the Escherichia coli soxR protein and role of the metal centers in transcription. J. Biol. Chem. 270: 20908–20914.

    Article  PubMed  CAS  Google Scholar 

  78. Hidalgo, E. and B. Demple. 1994. An iron-sulfur center essential for transcriptional activation by the redox sensing soxR protein. EMBO J. 13: 138–146.

    PubMed  CAS  Google Scholar 

  79. Nonushiba, T., T. de Rojas-Walker, J. S. Wishnok, S. R. Tannenbaum, B. Demple. 1993. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc. Natl Acad. Sci. USA. 90: 9993–9997.

    Article  Google Scholar 

  80. Demple, B. 1991. Regulation of bacterial oxidative stress genes. Annu. Rev. Genet. 25: 315–337.

    Article  PubMed  CAS  Google Scholar 

  81. Castro, L., M. Rodriguez and R. Radi. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J. Biol. Chem. 269: 29409–29415.

    Google Scholar 

  82. Crow, J. P., J. S. Beckman, and J. M. McCord. 1995. Sensitivity of the essential zincthiolate moiety of yeast alcohol dehydrogenase to hypochlorite and peroxynitrite. Biochemistry 34: 3544–3552.

    Article  PubMed  CAS  Google Scholar 

  83. Ray, A., K. S. LaForge, and P. B. Sehgal. 1991. Repressor to activator switch by mutations in the first Zn finger of the glucocorticoid receptor: is direct DNA binding necessary? Proc. Natl Acad. Sci. USA 88: 7086–7090.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spear, N., Estévez, A.G., Radi, R., Beckman, J.S. (1997). Peroxynitrite and Cell Signaling. In: Forman, H.J., Cadenas, E. (eds) Oxidative Stress and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5981-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5981-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7741-2

  • Online ISBN: 978-1-4615-5981-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics