Skip to main content
Log in

Hydroperoxide-Reducing Enzymes in the Regulation of Free-Radical Processes

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review presents current concepts of the molecular mechanisms of oxidative stress development and describes main stages of the free-radical reactions in oxidative stress. Endogenous and exogenous factors of the oxidative stress development, including dysfunction of cell oxidoreductase systems, as well as the effects of various external physicochemical factors, are discussed. The review also describes the main components of the antioxidant defense system and stages of its evolution, with a special focus on peroxiredoxins, glutathione peroxidases, and glutathione S-transferases, which share some phylogenetic, structural, and catalytic properties. The substrate specificity, as well as the similarities and differences in the catalytic mechanisms of these enzymes, are discussed in detail. The role of peroxiredoxins, glutathione peroxidases, and glutathione S-transferases in the regulation of hydroperoxide-mediated intracellular and intercellular signaling and interactions of these enzymes with receptors and non-receptor proteins are described. An important contribution of hydroperoxide-reducing enzymes to the antioxidant protection and regulation of such cell processes as growth, differentiation, and apoptosis is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

CP :

peroxidatic cysteine

CR :

resolving cysteine

Grx:

glutaredoxin

GPx:

glutathione peroxidase

GR:

glutathione reductase

GSH:

glutathione, reduced

HO :

hydroxyl radical

In :

antioxidant free radical

L :

lipid alkyl radical

LH:

polyunsaturated fatty acid

LO :

lipoxal radical

LOO :

lipoperoxy radical

LOOH:

lipid hydroperoxide

RHS:

reactive halogen species

ROS:

reactive oxygen species

RNS:

reactive nitrogen species

LPO:

lipid peroxidation

O2 •− :

superoxide anion radical

GST:

glutathione S-transferase

PDI:

protein disulfide isomerase

Prx:

peroxiredoxin

RO :

alkoxy radical

SOD:

superoxide dismutase

Trx:

thioredoxin

TrxR:

thioredoxin reductase

References

  1. Menshchikova, E. B., Lankin, V. Z., Zenkov, N. K., Bondar, I. A., Krugovykh, N. F., and Trufakin, V. A. (2006) Oxidative Stress. Peroxidants and Antioxidants, Slovo, Moscow.

  2. Hernansanz-Agustín, P., and Enríquez, J. A. (2021) Generation of reactive oxygen species by mitochondria, Antioxidants (Basel), 10, 415, https://doi.org/10.3390/antiox10030415.

    Article  CAS  Google Scholar 

  3. Chernyak, B. V., Izyumov, D. S., Lyamzaev, K. G., Pashkovskaya, A. A., Pletjushkina, O. Y., et al. (2006) Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress, Biochim. Biophys. Acta Bioenerg., 1757, 525-534, https://doi.org/10.1016/j.bbabio.2006.02.019.

    Article  CAS  Google Scholar 

  4. McCord, J. M. (2000) The evolution of free radicals and oxidative stress, Am. J. Med., 108, 652-659.

    Article  CAS  Google Scholar 

  5. Brand, M. D. (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling, Free Radic. Biol. Med., 100, 14-31, https://doi.org/10.1016/j.freeradbiomed.2016.04.001.

    Article  CAS  PubMed  Google Scholar 

  6. Crapo, J. D., and Tierney, D. F. (1974) Superoxide dismutase and pulmonary oxygen toxicity, Am. J. Physiol., 226, 1401-1407.

    Article  CAS  Google Scholar 

  7. Di Meo, S., Reed, T. T., Venditti, P., and Victor, V. M. (2016) Role of ROS and RNS sources in physiological and pathological conditions, Oxid. Med. Cell. Longev., 2016, 1245049, https://doi.org/10.1155/2016/1245049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Halliwell, B. (2020) Reflections of an aging free radical, Free Radic. Biol. Med., 161, 234-245, https://doi.org/10.1016/j.freeradbiomed.2020.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vladimirov, Y. A., and Proskurnina, E. V. (2009) Free radicals and cell chemiluminescence, Biochemistry (Moscow), 74, 1545-1566, https://doi.org/10.1134/S0006297909130082.

    Article  CAS  Google Scholar 

  10. Bruskov, V. I., Karp, O. E., Garmash, S. A., Shtarkman, I. N., Chernikov, A. V., and Gudkov, S. V. (2012) Prolongation of oxidative stress by long-lived reactive protein species induced by X-ray radiation and their genotoxic action, Free Radic. Res., 46, 1280-1290, https://doi.org/10.3109/10715762.2012.709316.

    Article  CAS  PubMed  Google Scholar 

  11. Soodaeva, S. K., Klimanov, I. A., and Nikitina, L. Y. (2017) Nitrosative and oxidative stresses in respiratory diseases, Pulmonologiya, 27, 262-273, https://doi.org/10.18093/0869-0189-2017-27-2-262-273.

    Article  Google Scholar 

  12. Schöneich, C. (2019) Thiyl radical reactions in the chemical degradation of pharmaceutical proteins, Molecules, 24, 4357, https://doi.org/10.3390/molecules24234357.

    Article  CAS  PubMed Central  Google Scholar 

  13. Panov, A. (2018) Perhydroxyl radical (HO2^(•)) as inducer of the isoprostane lipid peroxidation in mitochondria, Mol. Biol. (Mosk)., 52, 347-359, https://doi.org/10.7868/S0026898418030011.

    Article  CAS  PubMed  Google Scholar 

  14. Osipov, A. N., Borisenko, G. G., and Vladimirov, Y. A. (2007) Biological activity of hemoprotein nitrosyl complexes, Biochemistry (Moscow), 72, 1491-1504, https://doi.org/10.1134/S0006297907130068.

    Article  CAS  Google Scholar 

  15. Collin, F. (2019) Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases, Int. J. Mol. Sci., 20, 2407, https://doi.org/10.3390/ijms20102407.

    Article  CAS  PubMed Central  Google Scholar 

  16. Dutton, A. S., Fukuto, J. M., and Houk, K. N. (2005) Theoretical reduction potentials for nitrogen oxides from CBS-QB3 energetics and (C)PCM solvation calculations, Inorg. Chem., 44, 4024-4028, https://doi.org/10.1021/ic048734q.

    Article  CAS  PubMed  Google Scholar 

  17. Berg, J., Tymoczko, J., and Stryer, L. (2002) Biochemistry. 5th Edn., N. Y., W H Freeman.

  18. Panasenko, O. M., Torkhovskaya, T. I., Gorudko, I. V., and Sokolov, A. V. (2020) The Role of halogenative stress in atherogenic modification of low-density lipoproteins, Biochemistry (Moscow), 85 (Suppl 1), 34-55, https://doi.org/10.1134/S0006297920140035.

    Article  Google Scholar 

  19. Di Mascio, P., Martinez, G. R., Miyamoto, S., Ronsein, G. E., Medeiros, M. H. G., and Cadet, J. (2019) Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins, Chem. Rev., 119, 2043-2086, https://doi.org/10.1021/acs.chemrev.8b00554.

    Article  CAS  PubMed  Google Scholar 

  20. Sies, H., and Jones, D. P. (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat. Rev. Mol. Cell Biol., 21, 363-383, https://doi.org/10.1038/s41580-020-0230-3.

    Article  CAS  PubMed  Google Scholar 

  21. Kohlgrüber, S., Upadhye, A., Dyballa-Rukes, N., McNamara, C. A., and Altschmied, J. (2017) Regulation of transcription factors by reactive oxygen species and nitric oxide in vascular physiology and pathology, Antioxid. Redox Signal., 26, 679-699, https://doi.org/10.1089/ars.2016.6946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q., and Griendling, K. K. (2018) Reactive oxygen species in metabolic and inflammatory signaling, Circ. Res., 122, 877-902, https://doi.org/10.1161/circresaha.117.311401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoffmann, M. H., and Griffiths, H. R. (2018) The dual role of reactive oxygen species in autoimmune and inflammatory diseases: evidence from preclinical models, Free Radic. Biol. Med., 125, 62-71, https://doi.org/10.1016/j.freeradbiomed.2018.03.016.

    Article  CAS  PubMed  Google Scholar 

  24. Cadet, J., and Davies, K. J. A. (2017) Oxidative DNA damage & repair: an introduction, Free Radic. Biol. Med., 107, 2-12, https://doi.org/10.1016/j.freeradbiomed.2017.03.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chernikov, A. V., Gudkov, S. V., Usacheva, A. M., and Bruskov, V. I. (2017) Exogenous 8-oxo-7,8-dihydro-2′-deoxyguanosine: biomedical properties, mechanisms of action, and therapeutic potential, Biochemistry (Moscow), 82, 1686-1701, https://doi.org/10.1134/S0006297917130089.

    Article  CAS  Google Scholar 

  26. Chao, M. R., Evans, M. D., Hu, C. W., Ji, Y., Møller, P., et al. (2021) Biomarkers of nucleic acid oxidation – a summary state-of-the-art, Redox Biol., 42, 101872, https://doi.org/10.1016/j.redox.2021.101872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poetsch, A. R. (2020) The genomics of oxidative DNA damage, repair, and resulting mutagenesis, Comput. Struct. Biotechnol. J., 18, 207-219, https://doi.org/10.1016/j.csbj.2019.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davies, M. J. (2016) Protein oxidation and peroxidation, Biochem. J., 473, 805-825, https://doi.org/10.1042/BJ20151227.

    Article  CAS  PubMed  Google Scholar 

  29. Kehm, R., Baldensperger, T., Raupbach, J., and Höhn, A. (2021) Protein oxidation – formation mechanisms, detection and relevance as biomarkers in human diseases, Redox Biol., 42, 101901, https://doi.org/10.1016/j.redox.2021.101901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lankin, V. Z., Shumaev, K. B., Tikhaze, A. K., and Kurganov, B. I. (2017) Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase, Dokl. Biochem. Biophys., 475, 287-290, https://doi.org/10.1134/S1607672917040123.

    Article  CAS  PubMed  Google Scholar 

  31. Lankin, V. Z., Tikhaze, A. K., Konovalova, G. G., and Kozachenko, A. I. (1999) Concentration-dependent inversion of antioxidant and prooxidant effects of β-carotene in tissues in vivo, Bull. Exp. Biol. Med., 128, 930-932, https://doi.org/10.1007/bf02438088.

    Article  CAS  Google Scholar 

  32. Braakman, R. (2019) Evolution of cellular metabolism and the rise of a globally productive biosphere, Free Radic. Biol. Med., 140, 172-187, https://doi.org/10.1016/j.freeradbiomed.2019.05.004.

    Article  CAS  PubMed  Google Scholar 

  33. Ittarat, W., Sato, T., Kitashima, M., Sakurai, H., Inoue, K., and Seo, D. (2021) Rubredoxin from the green sulfur bacterium Chlorobaculum tepidum donates a redox equivalent to the flavodiiron protein in an NAD(P)H dependent manner via ferredoxin-NAD(P)+ oxidoreductase, Arch. Microbiol., 203, 799-808, https://doi.org/10.1007/s00203-020-02079-4.

    Article  CAS  PubMed  Google Scholar 

  34. Ding, H., and Demple, B. (2000) Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator, Proc. Natl. Acad. Sci. USA, 97, 5146-5150, https://doi.org/10.1073/pnas.97.10.5146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Case, A. J. (2017) On the origin of superoxide dismutase: an evolutionary perspective of superoxide-mediated redox signaling, Antioxidants (Basel), 6, 82, https://doi.org/10.3390/antiox6040082.

    Article  CAS  Google Scholar 

  36. Zorov, D. B., Andrianova, N. V., Babenko, V. A., Bakeeva, L. E., Zorov, S. D., et al. (2020) Nonphosphorylating oxidation in mitochondria and related processes, Biochemistry (Moscow), 85, 1570-1577, https://doi.org/10.1134/S0006297920120093.

    Article  CAS  Google Scholar 

  37. Lankin, V. Z., Vandyshev, D. B., Tikhaze, A. K., Kosykh, V. A., and Pomoǐnetskiǐ, V. D. (1981) Effect of hyperoxia on superoxide dismutase and glutathione lipoperoxidase activity in mouse tissues, Dokl. Akad. Nauk SSSR, 259, 229-231.

    CAS  PubMed  Google Scholar 

  38. Schröder, E., and Eaton, P. (2008) Hydrogen peroxide as an endogenous mediator and exogenous tool in cardiovascular research: issues and considerations, Curr. Opin. Pharmacol., 8, 153-159, https://doi.org/10.1016/j.coph.2007.12.012.

    Article  CAS  PubMed  Google Scholar 

  39. Rhee, S. G., Woo, H. A., and Kang, D. (2018) The role of peroxiredoxins in the transduction of H2O2 Signals, Antioxidants Redox Signal., 28, 537-557, https://doi.org/10.1089/ars.2017.7167.

    Article  CAS  Google Scholar 

  40. Olson, K. R. (2020) Reactive oxygen species or reactive sulfur species: why we should consider the latter, J. Exp. Biol., 223, jeb196352, https://doi.org/10.1242/jeb.196352.

    Article  PubMed  Google Scholar 

  41. Lu, J., and Holmgren, A. (2014) The thioredoxin antioxidant system, Free Radic. Biol. Med., 66, 75-87, https://doi.org/10.1016/j.freeradbiomed.2013.07.036.

    Article  CAS  PubMed  Google Scholar 

  42. Balsera, M., and Buchanan, B. B. (2019) Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress, Free Radic. Biol. Med., 140, 28-35, https://doi.org/10.1016/j.freeradbiomed.

    Article  CAS  PubMed  Google Scholar 

  43. Ingles-Prieto, A., Ibarra-Molero, B., Delgado-Delgado, A., Perez-Jimenez, R., Fernandez, J. M., et al. (2013) Conservation of protein structure over four billion years, Structure, 21, 1690-1697, https://doi.org/10.1016/j.str.2013.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johansson, L., Gafvelin, G., and Arnér, E. S. J. (2005) Selenocysteine in proteins – properties and biotechnological use, Biochim. Biophys. Acta Gen. Subj., 1726, 1-13, https://doi.org/10.1016/j.bbagen.2005.05.010.

    Article  CAS  Google Scholar 

  45. Atkinson, H. J., and Babbitt, P. C. (2009) Glutathione transferases are structural and functional outliers in the thioredoxin fold, Biochemistry, 48, 11108-11116, https://doi.org/10.1021/bi901180v.

    Article  CAS  PubMed  Google Scholar 

  46. Pan, J. L., and Bardwell, J. C. A. (2006) The origami of thioredoxin-like folds, Protein Sci., 15, 2217-2227, https://doi.org/10.1110/ps.062268106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Modi, T., Huihui, J., Ghosh, K., and Ozkan, S. B. (2018) Ancient thioredoxins evolved to modern day stability-function requirement by altering native state ensemble, Philos. Trans. R Soc. Lond. B Biol. Sci., 373, 20170184, https://doi.org/10.1098/rstb.2017.0184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsui, M., Oshima, M., Oshima, H., Takaku, K., Maruyama, T. (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene, Dev. Biol., 178, 179-185, https://doi.org/10.1006/dbio.1996.0208.

    Article  CAS  PubMed  Google Scholar 

  49. Nonn, L., Williams, R. R., Erickson, R. P., and Powis, G. (2003) The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice, Mol. Cell. Biol., 23, 916-922, https://doi.org/10.1128/MCB.23.3.916-922.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mitchell, D. A., Morton, S. U., Fernhoff, N. B., and Marletta, M. A. (2007) Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells, Proc. Natl. Acad. Sci. USA, 104, 11609-11614, https://doi.org/10.1073/pnas.0704898104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qayyum, N., Haseeb, M., Kim, M. S., Choi, S. (2021) Role of thioredoxin-interacting protein in diseases and its therapeutic outlook, Int. J. Mol. Sci., 22, 2754, https://doi.org/10.3390/ijms22052754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Benhar, M., Shytaj, I. L., Stamler, J. S., and Savarino, A. (2016) Dual targeting of the thioredoxin and glutathione systems in cancer and HIV, J. Clin. Invest., 126, 1630-1639, https://doi.org/10.1172/JCI85339.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lee, S., Kim, S. M., and Lee, R. T. (2013) Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance, Antioxid. Redox Signal., 18, 1165-1207, https://doi.org/10.1089/ars.2011.4322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seco-Cervera, M., González-Cabo, P., Pallardó, F. V., Romá-Mateo, C., and García-Giménez, J. L. (2020) Thioredoxin and glutaredoxin systems as potential targets for the development of new treatments in Friedreich’s ataxia, Antioxidants (Basel), 9, 1257, https://doi.org/10.3390/antiox9121257.

    Article  CAS  Google Scholar 

  55. Rhee, S. G., and Kil, I. S. (2017) Multiple functions and regulation of mammalian peroxiredoxins, Annu. Rev. Biochem., 86, 1-27, https://doi.org/10.1146/annurev-biochem-060815-014431.

    Article  CAS  Google Scholar 

  56. Luo, W., Chen, I., Chen, Y., Alkam, D., Wang, Y., and Semenza, G. L. (2016) PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia, Oncotarget, 7, 6379-6397, https://doi.org/10.18632/oncotarget.7142.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ma, S., Zhang, X., Zheng, L., Li, Z., Zhao, X., et al. (2016) Peroxiredoxin 6 is a crucial factor in the initial step of mitochondrial clearance and is upstream of the PINK1-Parkin pathway, Antioxid. Redox Signal., 24, 486-501, https://doi.org/10.1089/ars.2015.6336.

    Article  CAS  PubMed  Google Scholar 

  58. Sharapov, M. G., and Novoselov, V. I. (2019) Catalytic and signaling role of peroxiredoxins in carcinogenesis, Biochemistry (Moscow), 84, 79-100, https://doi.org/10.1134/S0006297919020019.

    Article  CAS  Google Scholar 

  59. Portillo-Ledesma, S., Randall, L. M., Parsonage, D., Dalla Rizza, J., Karplus, P. A., et al. (2018) Differential kinetics of two-cysteine peroxiredoxin disulfide formation reveal a novel model for peroxide sensing, Biochemistry, 57, 3416-3424, https://doi.org/10.1021/acs.biochem.8b00188.

    Article  CAS  PubMed  Google Scholar 

  60. Kalinina, E. V., Chernov, N. N., and Novichkova, M. D. (2014) Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes, Biochemistry (Moscow), 79, 1562-1583, https://doi.org/10.1134/S0006297914130082.

    Article  CAS  Google Scholar 

  61. Arakawa, S. (2013) Utilization of glutathione S-transferase Mu 1- and Theta 1-null mice as animal models for absorption, distribution, metabolism, excretion and toxicity studies, Expert Opin. Drug Metab. Toxicol., 9, 725-736, https://doi.org/10.1517/17425255.2013.780027.

    Article  CAS  PubMed  Google Scholar 

  62. Mohana, K., and Achary, A. (2017) Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance, Drug Metab. Rev., 49, 318-337, https://doi.org/10.1080/03602532.2017.1343343.

    Article  PubMed  Google Scholar 

  63. Singh, R. R., and Reindl, K. M. (2021) Glutathione S-transferases in cancer, Antioxidants (Basel), 10, 701, https://doi.org/10.3390/antiox10050701.

    Article  CAS  Google Scholar 

  64. Yang, W. S., Sriramaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., et al. (2014) Regulation of ferroptotic cancer cell death by GPX4, Cell, 156, 317-331, https://doi.org/10.1016/j.cell.2013.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Esworthy, R. S., Yang, L., Frankel, P. H., and Chu, F. F. (2005) Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice, J. Nutr., 135, 740-745, https://doi.org/10.1093/jn/135.4.740.

    Article  CAS  PubMed  Google Scholar 

  66. Chabory, E., Damon, C., Lenoir, A., Kauselmann, G., Kern, H., et al. (2009) Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice, J. Clin. Invest., 119, 2074-2085, https://doi.org/10.1172/JCI38940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu, L., Oveson, B. C., Jo, Y. J., Lauer, T. W., Usui, S., et al. (2009) Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage, Antioxid. Redox Signal., 11, 715-724, https://doi.org/10.1089/ars.2008.2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brigelius-Flohé, R., and Flohé, L. (2020) Regulatory phenomena in the glutathione peroxidase superfamily, Antioxidants Redox Signal., 33, 498-516, https://doi.org/10.1089/ars.2019.7905.

    Article  CAS  Google Scholar 

  69. Sharapov, M. G., Ravin, V. K., and Novoselov, V. I. (2014) Peroxiredoxins as multifunctional enzymes, Mol. Biol. (Mosk.), 48, 520-545, https://doi.org/10.1134/S0026893314040128.

    Article  CAS  Google Scholar 

  70. Peskin, A. V., and Winterbourn, C. C. (2021) The enigma of 2-Cys peroxiredoxins: what are their roles? Biochemistry (Moscow), 86, 84-91, https://doi.org/10.1134/S0006297921010089.

    Article  CAS  Google Scholar 

  71. Winterbourn, C. C., and Peskin, A. V. (2016) Kinetic approaches to measuring peroxiredoxin reactivity, Mol. Cells, 39, 26-30, https://doi.org/10.14348/molcells.2016.2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Flohé, L., Toppo, S., Cozza, G., and Ursini, F. (2011) A comparison of thiol peroxidase mechanisms, Antioxid. Redox Signal., 15, 763-780, https://doi.org/10.1089/ars.2010.3397.

    Article  CAS  PubMed  Google Scholar 

  73. Forshaw, T. E., Reisz, J. A., Nelson, K. J., Gumpena, R., Lawson, J. R., et al. (2021) Specificity of human sulfiredoxin for reductant and peroxiredoxin oligomeric state, Antioxidants (Basel), 10, 946, https://doi.org/10.3390/antiox10060946.

    Article  CAS  Google Scholar 

  74. Liu, Y., Li, M., Du, X., Huang, Z., and Quan, N. (2021) Sestrin 2, a potential star of antioxidant stress in cardiovascular diseases, Free Radic. Biol. Med., 163, 56-68, https://doi.org/10.1016/j.freeradbiomed.2020.11.015.

    Article  CAS  PubMed  Google Scholar 

  75. Fisher, A. B., Vasquez-Medina, J. P., Dodia, C., Sorokina, E. M., Tao, J.-Q., and Feinstein, S. I. (2018) Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes, Redox Biol., 14, 41-46, https://doi.org/10.1016/j.redox.2017.08.008.

    Article  CAS  PubMed  Google Scholar 

  76. Perkins, A., Nelson, K. J., Parsonage, D., Poole, L. B., and Karplus, P. A. (2015) Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling, Trends Biochem Sci., 40, 435-445, https://doi.org/10.1016/j.tibs.2015.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fisher, A. B. (2017) Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling, Arch. Biochem. Biophys., 617, 68-83, https://doi.org/10.1016/j.abb.2016.12.003.

    Article  CAS  PubMed  Google Scholar 

  78. Knoops, B., Becker, S., Poncin, M. A., Glibert, J., Derclaye, S., et al. (2018) Specific interactions measured by AFM on living cells between peroxiredoxin-5 and TLR4: relevance for mechanisms of innate immunity, Cell Chem. Biol., 25, 550-559.e3, https://doi.org/10.1016/j.chembiol.2018.02.006.

    Article  CAS  PubMed  Google Scholar 

  79. Sharapov, M. G., Glushkova, O. V., Parfenyuk, S. B., Gudkov, S. V., Lunin, S. M., and Novoselova, E. G. (2021) The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6, Arch. Biochem. Biophys., 702, 108830, https://doi.org/10.1016/j.abb.2021.108830.

    Article  CAS  PubMed  Google Scholar 

  80. Lee, Y. J. (2020) Knockout mouse models for peroxiredoxins, Antioxidants (Basel), 9, 182, https://doi.org/10.3390/antiox9020182.

    Article  CAS  Google Scholar 

  81. Radyuk, S. N., and Orr, W. C. (2018) The multifaceted impact of peroxiredoxins on aging and disease, Antioxid. Redox Signal., 29, 1293-1311, https://doi.org/10.1089/ars.2017.7452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nelson, K. J., Perkins, A., Van Swearingen, A. E. D., Hartman, S., Brereton, A. E., et al. (2018) Experimentally dissecting the origins of peroxiredoxin catalysis, Antioxid. Redox Signal., 28, 521-536, https://doi.org/10.1089/ars.2016.6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Labunskyy, V. M., Hatfield, D. L., and Gladyshev, V. N. (2014) Selenoproteins: molecular pathways and physiological roles, Physiol. Rev., 94, 739-777, https://doi.org/10.1152/physrev.00039.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gladyshev, V. N., Kryukov, G. V., Fomenko, D. E., and Hatfield, D. L. (2004) Identification of trace element-containing proteins in genomic databases, Annu. Rev. Nutr., 24, 579-596, https://doi.org/10.1146/annurev.nutr.24.012003.132241.

    Article  CAS  PubMed  Google Scholar 

  85. Mariotti, M., Ridge, P. G., Zhang, Y., Lobanov, A. V., Pringle, T. H., et al. (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes, PLoS One, 7, e33066, https://doi.org/10.1371/journal.pone.0033066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brigelius-Flohé, R., and Maiorino, M. (2013) Glutathione peroxidases, Biochim. Biophys. Acta Gen. Subj., 1830, 3289-3303, https://doi.org/10.1016/j.bbagen.2012.11.020.

    Article  CAS  Google Scholar 

  87. Toppo, S., Flohé, L., Ursini, F., Vanin, S., and Maiorino, M. (2009) Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme, Biochim. Biophys. Acta Gen. Subj., 1790, 1486-1500, https://doi.org/10.1016/j.bbagen.2009.04.007.

    Article  CAS  Google Scholar 

  88. Lubos, E., Loscalzo, J., and Handy, D. E. (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities, Antioxidants Redox Signal., 15, 1957-1997, https://doi.org/10.1089/ars.2010.3586.

    Article  CAS  Google Scholar 

  89. Jiao, Y., Wang, Y., Guo, S., and Wang, G. (2017) Glutathione peroxidases as oncotargets, Oncotarget, 8, 80093-80102, https://doi.org/10.18632/oncotarget.20278.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mannervik, B., Board, P. G., Hayes, J. D., Listowsky, I., and Pearson, W. R. (2005) Nomenclature for mammalian soluble glutathione transferases, Methods Enzymol., 401, 1-8, https://doi.org/10.1016/S0076-6879(05)01001-3.

    Article  CAS  PubMed  Google Scholar 

  91. Prohaska, J. R. (1980) The glutathione peroxidase activity of glutathione S-transferases, Biochim. Biophys. Acta, 611, 87-98, https://doi.org/10.1016/0005-2744(80)90045-5.

    Article  CAS  PubMed  Google Scholar 

  92. Lankin, V. Z., Tikhaze, A. K., Osis, Yu. G., Vikhert, A. M., Schewe, T., and Rapoport, S. (1985) Enzymatic regulation of lipid peroxidation in the membranes: the role of phospholipase A2 and glutathione transferase, Doklady Biochemistry, 281, 204-207.

    CAS  Google Scholar 

  93. Bondar’, T. N., Lankin, V. Z., and Antonovsky, V. L. (1989) The reduction of organic hydroperoxides by glutathione peroxidase and glutfthione S-transferase: the influence of substrate structure, Doklady Biochemistry, 304, 217-220.

    Google Scholar 

  94. Awasthi, Y. C., Zimniak, P., Singhal, S. S., and Awasthi, S. (1995) Physiological role of glutathione-S-transferases in protection mechanisms against lipid peroxidation: a commentary, Biochem. Arch., 11, 47-54.

    CAS  Google Scholar 

  95. Bao, Y., and Williamson, G. (1996) Metabolism of hydroperoxy-phospholipids in human hepatoma HepG2 cells, J. Lipid Res., 37, 2351-2360.

    Article  CAS  Google Scholar 

  96. Lankin, V. Z., Bondar, T. N., and Tikhaze, A. K. (1997) The influence of free fatty acids on the lipoperoxidase activity of antioxidative enzymes-Se-containing glutathione peroxidase and nonselenic glutathione-S-transferase, Dokl. Akad. Nauk, 357, 828-831.

    CAS  PubMed  Google Scholar 

  97. Sevanian, A., Muakkassah-Kelly, S. F., and Montestruque, S. (1983) The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides, Arch. Biochem. Biophys., 223, 441-452, https://doi.org/10.1016/0003-9861(83)90608-2.

    Article  CAS  PubMed  Google Scholar 

  98. Lankin, V. Z., Tikhaze, A. K., and Osis, Y. G. (2002) Modeling the cascade of enzymatic reactions in liposomes including successive free radical peroxidation, reduction, and hydrolysis of phospholipid polyenoic acyls for studying the effect of these processes on the structural-dynamic parameters of the membranes, Biochemistry (Moscow), 67, 566-574, https://doi.org/10.1023/a:1015502429453.

    Article  CAS  Google Scholar 

  99. Lankin, V. Z., Antonovsky, V. L., and Tikhaze, A. K. (2004) Regulation of free radical lipoperoxidation and organic peroxides metabolism during normal station and pathologies, in Peroxides at the Beginning of the Third Millennium, Nova Sci. Publ., pp. 85-111.

  100. Lankin, V. Z., Tikhaze, A. K., Kapel’ko, V. I., Shepel’kova, G. S., Shumaev, K. B., et al. (2007) Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress, Biochemistry (Moscow), 72, 1081-1090, https://doi.org/10.1134/S0006297907100069.

    Article  CAS  Google Scholar 

  101. Hayes, J. D., Flanagan, J. U., and Jowsey, I. R. (2005) Glutathione transferases, Annu. Rev. Pharmacol. Toxicol., 45, 51-88, https://doi.org/10.1146/annurev.pharmtox.45.120403.095857.

    Article  CAS  PubMed  Google Scholar 

  102. Allocati, N., Masulli, M., Di Ilio, C., and Federici, L. (2018) Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases, Oncogenesis, 7, 8, https://doi.org/10.1038/s41389-017-0025-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Goncalves, M., Moura Neto, J., Souza, C., Melo, P., and Reis, M. (2010) Evaluating glutathione S-Transferase (GST) null genotypes (GSTT1 and GSTM1) as a potential biomarker of predisposition for developing leukopenia, Int. J. Lab. Hematol., 32, e49-e56, https://doi.org/10.1111/j.1751-553X.2009.01169.x.

    Article  CAS  PubMed  Google Scholar 

  104. Pljesa-Ercegovac, M., Savic-Radojevic, A., Matic, M., Coric, V., Djukic, T., et al. (2018) Glutathione transferases: potential targets to overcome chemoresistance in solid tumors, Int. J. Mol. Sci., 19, 3785, https://doi.org/10.3390/ijms19123785.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dr. V. I. Novoselov for his invaluable comments on the manuscript.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-14-50114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mars G. Sharapov.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharapov, M.G., Gudkov, S.V. & Lankin, V.Z. Hydroperoxide-Reducing Enzymes in the Regulation of Free-Radical Processes. Biochemistry Moscow 86, 1256–1274 (2021). https://doi.org/10.1134/S0006297921100084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921100084

Keywords

Navigation