Skip to main content

Plasma Homocysteine in Renal Failure, Diabetes Mellitus, and Alcoholism

  • Chapter
Homocysteine Metabolism: From Basic Science to Clinical Medicine

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 196))

Abstract

Homocysteine, a sulfhydryl amino acid, is the demethylated derivative of methionine [1]. Greatly elevated plasma levels of homocysteine are found in subjects with homocystinuria [1]. These patients exhibit early arteriosclerosis as well as arterial and venous thrombosis. Recently, milder hyper-homocysteinemia has been reported in patients with premature vascular disease, many of whom may be heterozygous for homocystinuria [2–8]. Other conditions such as folate and vitamin B12 deficiency also cause elevation of homocysteine in plasma [1,9,10]. Adenosyl-methionine, the precursor of homocysteine, is the principal methyl donor in mammals. After a methyl transfer reaction (transmethylation), adenosyl-homocysteine is hydrolyzed to homocysteine and adenosine. Homocysteine may be either catabolized in the transsulfuration pathway via cystathionine and cysteine to inorganic sulfur, or remethylated back to methionine, mainly by the folate- and vitamin B12-dependent enzyme methionine synthase [1]. Patients with chronic renal failure, whether dialyzed or not, have a high risk of premature vascular disease, especially coronary and cerebrovascular accidents [11,12]. Among other factors that could increase the risk of vascular disease in chronic renal failure is mild hyperhomocysteinemia. Likewise, patients with diabetes mellitus and patients with heavy alcohol consumption have an increased risk of premature vascular disease, which could possibly be related to hyperhomocysteinemia. It is therefore of interest to study plasma homocysteine in all these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mudd SH, Harvey LL, Skovby F. Disorders of transsulfuration. In: Scriver CS, Beaudet AL, Sly WL, Valle D (eds) The Metabolic Basis of Inherited Disease, 6th ed. New York: McGraw-Hill Book Co., 1989, pp 693–734.

    Google Scholar 

  2. Boers GHJ, Smals AGH, Trijbels FJM et al. Heterozygosity for homocysteinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 313:709–715, 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Brattström L, Hardebo J, Hultberg B. Moderate homocysteinemia: A possible risk factor for arteriosclerotic cerebrovascular disease. Stroke 15:1012–1016, 1985.

    Article  Google Scholar 

  4. Brattström L, Israelsson B, Norrving B et al. Impaired homocysteine metabolism in early-onset cerebral and peripheral occlusive arterial disease effects of pyridox-ine and folic acid treatment. Atherosclerosis 81:51–60, 1990.

    Article  PubMed  Google Scholar 

  5. Clarke R, Leslie D, Robinson K et al. Hyper-homocysteinemia: An independent risk factor for vascular disease. N Engl J Med 324:1149–1155, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Kang SS, Wong PWK, Cook HY, Norusis M, Messer JV. Protein-bound homocysteine a possible risk factor for coronary artery disease. J Clin Invest 77:1482–1486, 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Malinow MR, Kang SS, Taylor LM et al. Prevalence of hyperhomocysteinemia in patients with peripheral arterial occlusive disease. Circulation 79:1180–1189, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Murphy Chutorian DR, Wexman MP, Grieco AJ et al. Methionine intolerance: A possible risk factor for coronary artery disease. J Am Coll Cardiol 6:725–734, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Brattström LE, Israelsson B, Jeppsson JO, Hultberg B. Folic acid, an innocuous means of reducing plasma homocysteine. Scand J Clin Lab Invest 48:215, 1988.

    Article  PubMed  Google Scholar 

  10. Kang SS, Wong PWK, Norusis M. Homocysteinemia due to folate deficiency. Metabolism 36:458, 1987.

    Article  PubMed  CAS  Google Scholar 

  11. Kaladelfos G, Edwards KDG. Increased prevalence of coronary heart disease in analgesic nephropathy: Relation of hypertension, hypertriglyceridemia and combined hyperlipidemia. Nephron 16:388–400, 1976.

    Article  PubMed  CAS  Google Scholar 

  12. Ibels LS, Stewart JH, Mahony JF, Neale FC, Sheil AGR. Occlusive arterial disease in uremic and haemodialysis patients and renal transplant recipients: A study of the incidence of arterial disease and of prevalence of risk factors implicated in the pathogenesis of arteriosclerosis. Q J Med NS 46:197–214, 1977.

    CAS  Google Scholar 

  13. Alvestrand A, Furst P, Bergström J. Plasma and muscle free amino acid in uremia: Influence of nutrition with amino acids. Clin Nephrol 18:297–305, 1982.

    PubMed  CAS  Google Scholar 

  14. Kopple J, Jones M, Fukuda S, Swendseid M. Amino acid and protein metabolism in renal failure. Am J Clin Nutr 31:1532–1538, 1987.

    Google Scholar 

  15. Hanning RM, Balfe JW, Zlotkin SH. Plasma amino acid response to a single dialysis cycle with amino acids in fed children on CAPD. J Can Diet Assoc 48:77–84, 1987.

    Google Scholar 

  16. Hanning RM, Balfe JW, Zlotkin SH. Effectiveness and nutritional consequences of amino acid-based vs glucose based dialysis solutions in infants and children receiving CAPD. Am J Clin Nutr 46:22–30, 1987.

    PubMed  CAS  Google Scholar 

  17. Bergström J, Alvestrand A, Fürst P, Lindholm B. Sulphur amino acid in plasma and muscle in patients with chronic renal failure: Evidence for taurine depletion. J Int Med 226:189, 1989.

    Article  Google Scholar 

  18. Ceballos I, Chauveau P, Guerin V et al. Early alterations of plasma free amino acids in chronic renal failure. Clin Chim Acta 188:101–108, 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Wilcken DEL, Gupta VJ. Sulphur containing amino acids in chronic renal failure with particular reference to homocystine and cysteine-homocysteine mixed disulphide. Eur J Clin Invest 9:301–307, 1979.

    Article  PubMed  CAS  Google Scholar 

  20. Wilcken DEL, Gupta VJ, Reddy SG. Accumulation of sulphur-containing amino acids including cysteine-homocysteine in patients on maintenance haemo-dialysis. Clin Sci 8:427–430, 1980.

    Google Scholar 

  21. Wilcken DEL, Gupta VJ, Betts AK. Homocysteine in the plasma of renal transplant recipients: Effects of cofactors for methionine metabolism. Clin Sci 61:743–749, 1981.

    PubMed  CAS  Google Scholar 

  22. Kang SS, Wong PWK, Bidani A, Milanez S. Plasma protein-bound homocyst(e)ine in patients requiring chronic hemodialysis. Clin Sci 65:335–336, 1983.

    PubMed  CAS  Google Scholar 

  23. Smolin LA, Laidlaw SA, Kopple JD. Altered plasma free and protein-bound sulfur amino acid levels in patients undergoing maintenance-hemodialysis. Am J Clin Nutr 45:737–743, 1987.

    PubMed  CAS  Google Scholar 

  24. Wilcken DEL, Dudman NPB, Tyrell PA, Robertson MR. Folic acid lowers elevated plasma homocysteine in chronic renal insufficiency: possible implication for prevention of vascular disease. Metabolism 37:697–701, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Soria C, Chadefaux B, Coude M, Gaillard O, Kamoun P. Concentrations of total homocysteine in plasma in chronic renal failure. Clin Chem 36:2137–2138, 1990.

    PubMed  CAS  Google Scholar 

  26. Chauveau P, Chadefaux B, Coude M et al. Increased plasma homocysteine concentration in patients with chronic renal failure. Miner Electrolyte Metab 18:196–198, 1992.

    PubMed  CAS  Google Scholar 

  27. Chaveau P, Chadefaux B, Coude M et al. Hyper-homocysteinemia, a risk factor for atherosclerosis in chronic uremic patients. Kidney Int 43:S72–S77, 1993.

    Google Scholar 

  28. Hultberg B, Andersson A, Sterner G. Plasma homocysteine in renal failure. Clin Nephrol 40:230–234, 1993.

    PubMed  CAS  Google Scholar 

  29. Arnadottir M, Brattström L, Simonsen O et al. The effect of high-dose pyridoxine and folic acid supplementation on serum lipid and plasma homocysteine concentrations in dialysis patients. Clin Nephrol 40: 236–240, 1993.

    PubMed  CAS  Google Scholar 

  30. Massy ZA, Chadefaux-Vekemans B, Chevalier A et al. Hyperhomocysteinemia: A significant risk factor for cardiovascular disease in renal transplant recipients. Nephrol Dial Transplant 9:1103–1108, 1994.

    PubMed  CAS  Google Scholar 

  31. Bostom AG, Shemin D, Lapane KL et al. Hyperhomocysteinemia and traditional cardiovascular risk factors in end-stage renal disease patients on dialysis: A case-control study. Atherosclerosis 114:93–103, 1995.

    Article  PubMed  CAS  Google Scholar 

  32. Bostom AG, Shemin D, Nadeau M et al. Short term betaine therapy fails to lower elevated fasting total plasma homocysteine concentrations in hemodialysis patients maintained on chronic folic acid supplementation. Atherosclerosis 13:129–132, 1995.

    Article  Google Scholar 

  33. Hultberg B, Andersson A, Arnadottir M. Reduced, free and total fractions of homocysteine and other thiol compounds in plasma from patients with renal failure. Nephron 70:62–67, 1995.

    Article  PubMed  CAS  Google Scholar 

  34. Arnadottir M, Hultberg B, Vladov V, Nilsson-Ehle P, Thysell H. Hyperhomocysteinemia in cyclosporin-treated renal transplant recipients. Transplantation 61:509–512, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Arnadottir M, Hultberg B, Nilsson-Ehle P, Thysell H. The effect of reduced glomerular filtration rate on plasma homocysteine concentration. Scand J Clin Lab Invest 56:41–46, 1996.

    Article  PubMed  CAS  Google Scholar 

  36. Stabler SP, Marceil PD, Podell ER, Allen RH. Quantitation of total homocysteine, total cysteine and methionine in normal serum and urine using capillary gas chromatography-massspectrometry. Annals Biochem 162:185–196, 1987.

    Article  CAS  Google Scholar 

  37. Mudd SH, Poole JR. Labile methyl balances for normal humans on various dietary regimens. Metabolism 24:721–735, 1975.

    Article  PubMed  CAS  Google Scholar 

  38. Foreman JW, Wald H, Blumberg G, Pepe LM, Segal S. Homocysteine uptake in isolated rat renal cortical tubules. Metabolism 31:613–619, 1982.

    Article  PubMed  CAS  Google Scholar 

  39. McKeever MP, Weir DG, MoUoy A, Scott JM. Betaine-homocysteine methyltransferase: Organ distribution in man, pig and rat and subcellular distribution in the rat. Clin Sci 81:551–556, 1991.

    PubMed  CAS  Google Scholar 

  40. Bostom A, Brosnan JT, Hall B, Nadeau MR, Selhub J. Net uptake of plasma homocysteine by the rat kidney in vivo. Atherosclerosis 116:59–62, 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Guttormsen AB, Svarstad E, Ueland PM, Refsum H. Elimination of homocysteine from plasma in subjects with endstage renal failure. Kidney Int 52:495–502, 1997.

    Article  PubMed  CAS  Google Scholar 

  42. Selhub J, Miller JW. The pathogenesis of homocysteinemia: Interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr 55:131, 1992.

    PubMed  CAS  Google Scholar 

  43. Bocock MA, Zlotkin SH. Hepatic sulfur amino acid metabolism in rats with chronic renal failure. J Nutr 120:691–699, 1990.

    PubMed  CAS  Google Scholar 

  44. Tizianello A, De Ferrari G, Garibotto G, Gurreri G, Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 65:1162–1168, 1980.

    Article  PubMed  CAS  Google Scholar 

  45. Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA 85:9748–9753, 1988.

    Article  PubMed  CAS  Google Scholar 

  46. Costagliola C, Romano L, Sorice P, Di Benedetto A. Anemia and chronic renal failure: The possible role of the oxidative state of glutathione. Nephron 52:11–14, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Borch-Johnsen K, Andersen PK, Deckert T. The effect of proteinuria on relative mortality in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 28:1079–1082, 1985.

    Article  Google Scholar 

  48. Hultberg B, Agardh E, Andersson A et al. Increased levels of plasma homocysteine are associated with nephropathy, but not severe retinopathy in type 1 diabetes mellitus. Scand J Clin Lab Invest 51:277–282, 1991.

    Article  PubMed  CAS  Google Scholar 

  49. Araki A, Sako Y, Ito H. Plasma homocysteine concentration in Japanese patients with non-insulin-dependent diabetes mellitus: effect of parenteral methylcobalamin treatment. Atherosclerosis 103:149–157, 1993.

    Article  PubMed  CAS  Google Scholar 

  50. Agardh C-D, Agardh E, Andersson A, Hultberg B. Lack of association between plasma homocysteine levels and microangiopathy in type 1 diabetes mellitus. Scand J Clin Lab Invest 54:637–641, 1994.

    Article  PubMed  CAS  Google Scholar 

  51. Lindenbaum J. Hematologic effects of alcohol. In: Kissin B, Begleiter H (eds) The Biology of Alcoholism, Vol 3: Clinical Pathology. New York: Plenum Press, 1974, pp 461–480.

    Google Scholar 

  52. Weir DG, McGing PG, Scott JM. Folate metabolism, the enterohepatic circulation and alcohol. Biochem Pharmacol 34:1–7, 1985.

    Article  PubMed  CAS  Google Scholar 

  53. Blocker DE, Thenen SW. Intestinal absorption, liver uptake and excretion of 3H-folic acid-deficient, alcohol consuming nonhuman primates. Am J Clin Nutr 46:503–510, 1987.

    PubMed  CAS  Google Scholar 

  54. Reisenauer AM, Buffington CAT, Villanueva JA, Halsted CH. Folate absorption in alcoholic pigs: In vivo intestinal perfusion studies. Am J Clin Nutr 50:1429–1435, 1989.

    PubMed  CAS  Google Scholar 

  55. McMartin KE, Collins TD, Eisenga BH et al. Effect of chronic ethanol and diet treatment on urinary folate excretion and development of folate deficiency in the rat. J Nutr 119:1490–1497, 1989.

    PubMed  CAS  Google Scholar 

  56. Shaws S, Jayatilleke E, Herbert V, Colman N. Cleavage of folates during ethanol metabolism. Biochem J 257:277–280, 1989.

    Google Scholar 

  57. Gill JS, Shipley MJ, Tsementzis SA et al. Alcohol consumption: a risk factor for hemorrhagic and non-hemorrhagic stroke. Am J Med 90:489–497, 1991.

    PubMed  CAS  Google Scholar 

  58. Hultberg B, Berglund M, Andersson A, Frank A. Elevated plasma homocysteine in alcoholics. Alc Clin Exp Res 17:687–689, 1993.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hultberg, B., Andersson, A., Arnadottir, M. (1997). Plasma Homocysteine in Renal Failure, Diabetes Mellitus, and Alcoholism. In: Graham, I., Refsum, H., Rosenberg, I.H., Ueland, P.M., Shuman, J.M. (eds) Homocysteine Metabolism: From Basic Science to Clinical Medicine. Developments in Cardiovascular Medicine, vol 196. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5771-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5771-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7645-3

  • Online ISBN: 978-1-4615-5771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics