Skip to main content

Cardosinogen A

The Precursor Form of the Major Aspartic Proteinase from Cardoon

  • Chapter
Aspartic Proteinases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 436))

Abstract

A feature common to many proteases, including aspartic proteinases, is that they are synthesised as inactive zymogens, subsequently undergoing proteolytic processing to yield the active enzyme. This is a way of assuring the correct folding of the proteinase, regulating its activity during biosynthesis and avoiding unwanted proteolysis. Most aspartic proteinases have a conserved N-terminal pro-segment, which is later removed (1). In pepsinogen, the pro-segment is located over the active site cleft, stabilized by salt bridges that are disrupted at low pH (2). In cathepsin D, apart from the N-terminal pro-segment and a C-terminal dipeptide there is another sequence which is also removed, located within the protein (3). Removal of this 2–7 amino acid long sequence gives rise to the two chain active cathepsin D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Koelsch, M. Mares, P. Metcalf, M. Fusek, Multiple functions of pro-parts of aspartic proteinase zymogens. FEBS Lett. 343: 6 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. M.N.G. James, A.R. Sielecki, Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 Å resolution. Nature 319: 33 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. S. Yonezawa, T. Takahashi, X.J. Wang, R.N. Wong, J.A. Hartsuck, J. Tang, Structures at the proteolytic processing region of cathepsin D. J. Biol. Chem. 263: 16504 (1988).

    PubMed  CAS  Google Scholar 

  4. J. Kervinen, K. Törmäkangas, P. Runeberg-Roos, K. Guruprasad, T. Blundell, T.H. Teeri, Structure and possible function of aspartic proteinases in barley and other plants. In “Aspartic Proteinases: Structure, Function, Biology and Biomedical Implications”. K. Takahashi, ed., p 241, Springer Science+Business Media New York (1995).

    Google Scholar 

  5. C. Faro, M. Ramalho-Santos, P. Veríssimo, J. Pissarra, C. Frazäo, J. Costa, X.-l. Lin, J. Tang, E. Pires, Structural and functional aspects of cardosins. In “Structure and Function of Aspartic Proteinases: Retroviral and Cellular Enzymes”, M.N.G. James, ed., p., Springer Science+Business Media New York (1997).

    Google Scholar 

  6. P. Veríssimo, C. Faro, A.J.G. Moir, Y. Lin, J. Tang, E. Pires, Purification, characterization and partial amino acid sequencing of two novel aspartic proteinases from fresh flowers of Cynara cardunculus. Eur. J. Biochem. 235: 762(1996).

    Article  PubMed  Google Scholar 

  7. C. Faro, P. Veríssimo, A.J.G. Moir, Y. Lin, J. Tang, E. Pires, Cardosin A and B, aspartic proteases from the flowers of cardoon. In “Aspartic Proteinases: Structure, Function, Biology and Biomedical Implications”, K. Takahashi, ed., p 241, Springer Science+Business Media New York (1995).

    Google Scholar 

  8. M. Ramalho-Santos, J. Pissarra, P. Veríssimo, S. Pereira, R. Salema, E. Pires, C.J. Faro, Cardosin A, an abundant aspartic proteinase, accumulates in protein storage vacuoles of the stigmatic papillae of Cynara cardunculus L. Planta (accepted for publication) (1997).

    Google Scholar 

  9. J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular cloning: a laboratory manual, Second Ed., Cold Spring Harbour Laboratory Press, New York (1989).

    Google Scholar 

  10. P. Veríssimo, C. Esteves, C.J. Faro, E.V. Pires, The vegetable rennet of Cynara cardunculus contains two proteinases with chymosin and pepsin-like specificities. Biotech. Lett. 17: 621 (1995).

    Article  Google Scholar 

  11. M. Ramalho-Santos, P. Veríssimo, C. Faro, E. Pires, Action on bovine αsl-casein of cardosins A and B, aspartic proteinases from the flowers of the cardoon Cynara cardunculus L.. Biochim. Biophys. Acta 1297: 83(1996).

    Article  PubMed  Google Scholar 

  12. S. Pereira, H. Carvalho, C. Sunkel, R. Salema, Immunocytolocalization of glutamine synthetase in meso-phyll and phloem of leaves of Solanum tuberosum L. Protoplasma 167: 66 (1992).

    Article  CAS  Google Scholar 

  13. K. Guruprasad, K. Törmäkangas, J. Kervinen, T. Blundell, Comparative modelling of barley-grain aspartic proteinase: a structural rationale for observed hydrolytic specificity. FEBS Lett. 352: 131 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. J.S. O’Brien, Y Kishimoto, Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J. 5: 301 (1991).

    PubMed  Google Scholar 

  15. Y. Zhu, G.E. Conner, Intermolecular association of lysosomal protein precursors during biosynthesis. J. Biol. Chem. 269:3846(1994).

    PubMed  CAS  Google Scholar 

  16. K. Nakamura, K. Matsuoka, Protein targeting to the vacuole in plant cells. Plant Physiol. 101:1 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. S.Y. Bednarek, N.V. Raikhel, The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Plant Cell 3: 1195 (1991).

    PubMed  CAS  Google Scholar 

  18. J.E. Dombrowski, M.R. Schroeder, S.Y. Bednarek, N.V. Raikhel, Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell 5: 587 (1993).

    PubMed  CAS  Google Scholar 

  19. P. Runeberg-Roos, J. Kervinen, V Kovaleva, N.V Raikhel, S. Gal, The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin in vitro. Plant Physiol. 105: 321 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. J.S. O’Brien, G.S. Carson, H.-C. Seo, M. Hiraiwa, Y. Kishimoto, Identification of prosaposin as a neurotrophic factor. Proc. Natl. Acad. Sei. USA 91: 9593 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramalho-Santos, M., Pissarra, J., Pires, E., Faro, C. (1998). Cardosinogen A. In: James, M.N.G. (eds) Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 436. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5373-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5373-1_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7452-7

  • Online ISBN: 978-1-4615-5373-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics