Skip to main content

Neurotrophic Signaling by Membrane Electrical Activity in Spiral Ganglion Neurons

  • Chapter
Cell and Molecular Biology of the Ear

Abstract

Survival of spiral ganglion neurons (SGNs) in vitro is supported by neurotrophins (BDNF and NT-3), by permeant cyclic AMP analogs, and by depolarization; the latter being most efficacious. These stimuli act through independent intracellular signal pathways, which accounts for their additivity and for their different effects on neuronal morphology and neurite growth. Depolarization promotes survival by raising cytosolic Ca2+ concentration within a set range. Endogenous cyclic AMP signaling and an autocrine neurotrophin mechanism contribute significantly to the survival-promoting effect of depolarization. However, the major intracellular signals recruited by Ca2+ to promote survival are the Ca2+/CaM-dependent protein kinases (CaMKs). CaMKs are activated by depolarization in SGNs. CaMK inhibitors inhibit survival-promoting effects of depolarization. Transfection of constitutively active CaMKII and CaMKIV mutants into SGNs permits survival even in the absence of exogenous survival-promoting stimuli. CaMKII and CaMKIV activity are not additive in their promotion of survival, indicating that they act via the same downstream effector(s). However, CaMKII and CaMKIV differ dramatically in their other effects on SGNs: CaMKII activity strongly inhibits neurite outgrowth but CaMKIV activity has no such effect. These observations of the ability of SGNs to sum independent intracellular signals to promote survival helps in understanding how SGN survival is supported in vivo and establishes SGNs as a model for studying the molecular mechanism of summation. These observations also have clinical implications with regard to means used to support SGN survival in deaf people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avila, M.A., Varela-Nieto, I., Romero, G., Mato, J.M., Giraldez, E, Van De Water, T.R., and Represa, J. (1993). Brain-derived neurotrophic factor and neurotrophin-3 support the survival and neuritogenesis response of developing cochleovestibular ganglion cells. Dev. Biol. 159, 266–275.

    Google Scholar 

  • Bennett, M.R., and White, W. (1979). The survival and development of cholinergic neurons in potassium-enriched media. Brain Res. 173, 549–553.

    Article  PubMed  CAS  Google Scholar 

  • Bichler, E., Spoendlin, H., and Rauchegger, H. (1983). Degeneration of cochlear neurons after amikacin intoxication in the rat. Arch Otorhinolaryngol. 237, 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Born, D.E., and Rubel, E.W. (1988). Afferent influences on brain stem auditory nuclei of the chicken: presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. J. Neurosci. 8, 901–919.

    PubMed  CAS  Google Scholar 

  • Catsicas, M., Péquinot, Y., and Clarke, P.G.H. (1992). Rapid onset of neuronal death induced by blockade of either axoplasmic transport or action potentials in afferent fibers during brain development. J. Neurosci. 12, 4642–4650.

    PubMed  CAS  Google Scholar 

  • Chalazonitis, A., and Fischbach, G.D. (1980). Elevated potassium induces morphological differentiation of dorsal root ganglionic neurons in dissociated cell culture. Dev. Biol. 78,172–183.

    Google Scholar 

  • Cheung, W.Y., and Storm, D.R. (1982). Calmodulin regulation of cAMP metabolism. Handbook Exp. Pharmacol. 58, 301–317.

    CAS  Google Scholar 

  • D’Mello, S.R., Borodezt, K., and Soltoff, S.P. (1997). Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J. Neurosci. 17, 1548–1560.

    PubMed  Google Scholar 

  • Dudek, H., Datta, S.D., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R., and Greenberg, M.E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors, P., Duan, M.L., ElShamy, W.M., and Canlon, B. (1996). Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nature Med. 2, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Furber, S., Oppenheim, R.W., and Prevette, D. (1987). Naturally-occurring neuron death in the ciliary ganglion of the chick embryo following removal of preganglionic input: evidence for the role of afferents in ganglion cell survival. J. Neurosci. 7,1816–1832.

    PubMed  CAS  Google Scholar 

  • Gabellini, N., Minozzi, M.-C., Leon, A., and Dal Toso, R. (1992). Nerve growth factor transcriptional control of c-fos promoter transfected in cultured spinal sensory neurons. J. Cell Biol.118,131–138.

    Article  PubMed  CAS  Google Scholar 

  • Galli-Resta, L., Ensini, M., Fusco, E., Gravina, A., and Margheritti, B. (1993). Afferent spontaneous electrical activity promotes the survival of target cells in the developing retinotectal system of the rat. J. Neurosci. 13, 243–250.

    PubMed  CAS  Google Scholar 

  • Gallo, V., Kingsbury, A., Balazs, R., and Jorgensen, O.S. (1987). The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J. Neurosci. 7, 2203–2213.

    PubMed  CAS  Google Scholar 

  • Ghosh, A., and Greenberg, M.E. (1995). Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Ginty, D.D., Kornhauser, J.M., Thompson, M.A., Bading, H., Mayo, K.E., Takahashi, J.S., and Greenberg, M.E. (1993). Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260, 238–241.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, M.R., Zha, X.-M., Bok, J., and Green, S.H. Multiple distinct signal pathways, including an autocrine neurotrophic mechanism, contribute to the survival-promoting effect of depolarization on spiral ganglion neurons (unpublished).

    Google Scholar 

  • Hanson, P.I., and Schulman, H. (1992). Neuronal Cat+/calmodulin-dependent protein kinases. Annu. Rev. Biochem. 61, 559–601.

    Article  CAS  Google Scholar 

  • Hartshorn, D.O., Miller, J.M., and Altschuler, R.A. (1991). Protective effect of electrical stimulation in the deafened guinea pig cochlea. Otolaryngology-Head and Neck Surgery 104, 311–319.

    PubMed  CAS  Google Scholar 

  • Hegarty, J.L., Kay, A.R., and Green, S.H. (1997). Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cyclic AMP, and requires elevation of [Cal, within a set range. J. Neurosci. 17, 1959–1970.

    PubMed  CAS  Google Scholar 

  • Koitchev, K., Guilhaume, A., Cazals, Y., and Aran, J.-M. (1982). Spiral ganglion changes after massive aminoglycoside treatment in the guinea pig. Counts and ultrastructure. Acta Otolaryngol. 94, 431–438.

    Article  PubMed  CAS  Google Scholar 

  • Leake, P.A., Hradek, G.T., Rebscher, S.J., and Snyder, R.L. (1991). Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hearing Res. 54, 251–271.

    Article  CAS  Google Scholar 

  • Leake, P.A., Snyder, R.L., Hradek, G.T., and Rebscher, S.J. (1992). Chronic intracochlear electrical stimulation in neonatally deafened cats: effects of intensity and stimulating electrode location. Hearing Res. 64, 99–117.

    Article  CAS  Google Scholar 

  • Lefebvre, RP, Malgrange, B., Staecker, H., Moghadass, M., Van De Water, T.R., and Moonen, G. (1994). Neurotrophins affect survival and neuritogenesis by adult injured auditory neurons in vitro. NeuroReports 5, 865–868.

    Article  CAS  Google Scholar 

  • Lefebvre, P.P., Van de Water, T.R., Weber, T., Rogister, B., and Moonen, G. (1991). Growth factor interactions in cultures of dissociated adult acoustic ganglia: neuronotrophic effects. Brain Res. 567, 306–312.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S.A. (1986). Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture. Proc. Natl. Acad. Sci. U. S. A. 83, 9774–9778.

    Article  PubMed  CAS  Google Scholar 

  • Lousteau, R.J. (1987). Increased spiral ganglion cell survival in electrically stimulated deafened guinea pig cochleae. Laryngoscope 97, 836–842.

    Article  PubMed  CAS  Google Scholar 

  • Lustig, L.R., Leake, P.A., Snyder, R.L., and Rebscher, S.J. (1994). Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation. Hearing Res. 74, 29–37.

    Article  CAS  Google Scholar 

  • Maderdrut, J.L., Oppenheim, R.W., and Prevette, D. (1988). Enhancement of naturally-occurring cell death in the sympathetic and parasympathetic ganglia of the chicken embryo following blockade of ganglionic transmission. Brain Res. 444,189–194.

    Article  PubMed  CAS  Google Scholar 

  • Meriney, S.D., Pilar, G., Ogawa, M., and Nunez, R. (1987). Differential neuronal survival in the avian ciliary ganglion after chronic acetylcholine receptor blockade. J. Neurosci. 7, 3840–3849.

    PubMed  CAS  Google Scholar 

  • Miller, J.M., Chi, D.H., O’Keeffe, L.J., Kruszka, P, Raphael, Y., and Altschuler, R.A. (1997a). Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss. Int. J. Dev. Neurosci. 15, 631–643.

    Article  CAS  Google Scholar 

  • Miller, T.M., Tansey, M.G., Johnson, E.M. Jr., and Creedon, D.J. (1997b). Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization-and insulin-like growth factor I-mediated survival of cerebellar granule cells. J. Biol. Chem. 272, 9847–9853.

    Article  CAS  Google Scholar 

  • Pang, L., Sawada, T., Decker, S.J., and Saltiel, A.R. (1995). Inhibition of MAP kinase kinase blocks the differentiation of PC12 cells induced by nerve growth factor. J. Biol. Chem. 270,13585–13588.

    Article  PubMed  CAS  Google Scholar 

  • Pasic, T.R., and Rubel, E.W. (1989). Rapid changes in cochlear nucleus cell size following blockade of auditory nerve electrical activity in gerbils. J. Comp. Neurol. 283, 474–480.

    Article  PubMed  CAS  Google Scholar 

  • Pirvola, U., Arumae, U., Moshnyakov, M., Palgi, J., Saarma, M., and Ylikoski, J. (1994). Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hearing Res. 75,131–144.

    Article  CAS  Google Scholar 

  • Rothermel, J.D., Stec, W.J., Baraniak, J., Jastorff, B., and Botelho, L.H. (1983). Inhibition of glycogenolysis in isolated rat hepatocytes by the Rp diastereomer of adenosine cyclic 3’,5’-phosphorothioate. J. Biol. Chem. 258,12125–12128.

    PubMed  CAS  Google Scholar 

  • Rubel, E.W., Hyson, R.L., and Durham, D. (1990). Afferent regulation of neurons in the brain stem auditory system. J. Neurobiol. 21, 169–196.

    Article  PubMed  CAS  Google Scholar 

  • Ruitjer, J.M., Baker, R.E., De Jong, B.M., and Romijn, H.J. (1991). Chronic blockade of bioelectric activity in neonatal rat cortex grown in vitro. Morphological effects. Int. J. Dev. Neurosci. 9, 331–338.

    Article  Google Scholar 

  • Schecterson, L.C., and Bothwell, M. (1994). Neurotrophin and neurotrophin receptor mRNA expression in developing inner ear. Hearing Res. 73, 92–100.

    Article  CAS  Google Scholar 

  • Schulman, H., Heist, K., and Srinivasan, M. (1995). Decoding Ca’ signals to the nucleus by multifunctional CaM kinase. Prog. Brain Res. 105, 95–104.

    Article  CAS  Google Scholar 

  • Scott, B.S., and Fisher, K.C. (1970). Potassium concentration and number of neurons in cultures of dissociated ganglia. Exp. Neurol. 27, 16–22.

    CAS  Google Scholar 

  • Shelton, D.L., Sutherland, J., Gripp, J., Camerato, T., Armanini, M.P., Phillips, H.S., Carroll, K., Spencer, S.D., and Levinson, A.D. (1995). Human trks: molecular cloning, tissue distribution, and expression of extracellular domain immunoadhesins. J. Neurosci. 15, 477–491.

    PubMed  CAS  Google Scholar 

  • Sie, K.C., and Rubel, E.W. (1992). Rapid changes in protein synthesis and cell size in the cochlear nucleus following eighth nerve activity blockade or cochlea ablation. J. Comp. Neurol. 320, 501–508.

    Article  PubMed  CAS  Google Scholar 

  • Spoendlin, H. (1971). Degeneration behavior of the cochlear nerve. Archiv. Klin. Exp. Ohren Nasen Kehlkopfheilk. 200, 275–291.

    Article  CAS  Google Scholar 

  • Spoendlin, H. (1975). Retrograde degeneration of the cochlear nerve. Acta Otolaryngol. 79, 266–275.

    Article  PubMed  CAS  Google Scholar 

  • Staecker, H., Kopke, R., Malgrange, B., Lefebvre, P., and Van de Water, T.R. (1996). NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. Neuroreport 7, 889–894.

    Article  PubMed  CAS  Google Scholar 

  • Vazquez, E., Van de Water, T.R., Del Valle, M., Vega, J.A., Staecker, H., Giráldez, E, and Represa, J. (1994). Pattern of trkB protein-like immunoreactivity in vivo and the in vitro effects of brain-derived neurotrophic factor (BDNF) on developing cochlear and vestibular neurons. Anat. Embryol. 189, 157–167.

    Article  CAS  Google Scholar 

  • Wakade, A.R., Edgar, D., and Thoenen, H. (1983). Both nerve growth factor and high K’ concentrations support the survival of chick embryo sympathetic neurons. Evidence for a common mechanism of action. Exp. Cell Res. 144, 377–384.

    Article  CAS  Google Scholar 

  • Webster, M., and Webster, D.B. (1981). Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Brain Res. 212, 17–30.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, E.F., Bothwell, M., Schecterson, L.C., and von Bartheld, C.S. (1994). Expression of BDNF and NT-3 mRNA in hair cells of the organ of Corti: quantitative analysis in developing rats. Hear. Res. 73, 46–56.

    CAS  Google Scholar 

  • Wong-Riley, M.T.T., Walsh, S.M., and Leake-Jones, P.A. (1981). Maintenance of neuronal activity by electrical stimulation of unilaterally deafened cats demonstrable with cytochrome oxidase technique. Ann. Otol. Rhinol. Laryngol. 90, 30–32.

    CAS  Google Scholar 

  • Wright, L. (1981). Cell survival in chick embryo ciliary ganglion is reduced by chronic ganglionic blockade. Dev. Brain Res. 1, 283–286.

    Article  CAS  Google Scholar 

  • Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., and Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331.

    Article  PubMed  CAS  Google Scholar 

  • Yao, R., and Cooper, G.M. (1995). Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003–2006.

    Article  PubMed  CAS  Google Scholar 

  • Ylikoski, J., Pirvola, U., Moshnyakov, M., Palgi, J., Arumäe, U., and Saarma, M. (1993). Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hearing Res. 65, 69–78.

    Article  CAS  Google Scholar 

  • Ylikosky, J., Pirvola, U., Suvanto, P., Liang, X.-Q., Virkkala, J., Magal, E., Altschuler, R.A., Miller, J.M., and Saarma, M. (1998). Guinea pig auditory neurons are protected by GDNF from degeneration after noise trauma. Hear. Res., in press.

    Google Scholar 

  • Zheng, J.L., Stewart, R.R., and Gao, W.-Q. (1995). Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxicity. J. Neurosci. 15, 5079–5087.

    PubMed  CAS  Google Scholar 

  • Zou, D.J., and Cline, H.T. (1996). Expression of constitutively active CaMKII in target tissue modifies presynaptic axon arbor growth. Neuron 16, 529–539.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Green, S.H. (2000). Neurotrophic Signaling by Membrane Electrical Activity in Spiral Ganglion Neurons. In: Lim, D.J. (eds) Cell and Molecular Biology of the Ear. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4223-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4223-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6896-0

  • Online ISBN: 978-1-4615-4223-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics