Skip to main content

Stromal-epithelial interactions in normal and neoplastic mammary gland

  • Chapter
Regulatory Mechanisms in Breast Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 53))

Abstract

Mesenchymal-epithelial interactions are critically important during embryonic development for normal organogenesis. These tissue interactions are thought to be reciprocal and are clearly involved in many fundamental developmental mechanisms, such as morphogenetic movement [1–3], cellular proliferation [4–7], and cell death [8]. Although many organs are fully functional before birth, other organs, particularly those of the reproductive system, undergo major morphogenetic changes and cyclic expression of functional differentiation postnatally over extended periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 419.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernfield MR, Wessells NK, 1970. Intra-and extracellular control of epithelial morphogenesis. Dev Biol Supp 4:195–249.

    Google Scholar 

  2. Bernfield MR, Banerjee SD, Koda JE, Rapraeger AC, 1984. Remodeling of the basement membrane as a mechanism of morphogenetic tissue interaction. In The Role of Extracellular Matrix in Development Trelstad RL, ed). New York: A.R. Liss, pp. 545–596.

    Google Scholar 

  3. Spooner BS 1973. Microfilaments, cell shape changes and morphogenesis of salivary epithelium. Am Zool 13:1007–1022.

    Google Scholar 

  4. Alescio T, Piperno EC, 1967. A quantitative assessment of mesenchymal contribution to epithelial growth rate in mouse embryonic lung development in vitro. J Embryol Exp Morphol 17:213–227.

    PubMed  CAS  Google Scholar 

  5. Goldin GV, Wessells NK, 1979. Mammalian lung development: The possible role of cell proliferation in the formation of supranumerary trachal buds and in branching morphogenesis. J Exp Zool 208:337–346.

    Article  PubMed  CAS  Google Scholar 

  6. Chung LWK, Cunha GR, 1983. Stromal-epithelial interactions II. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate 4:503–511.

    Article  PubMed  CAS  Google Scholar 

  7. Ekblom P, 1984. Basement membrane proteins and growth factors in kidney differentiation. In The Role of Extracellular Matrix and Development (Trelstad RL ed). New York: A.R. Liss, pp. 173–206.

    Google Scholar 

  8. Kratochivil K, Schwartz P, 1976. Tissue interaction in adrogen response of embryonic mammary rudiment of mouse: Identification of target tissue of testosterone. Proc Natl Acad sciUSA 73:4041–4044.

    Article  Google Scholar 

  9. Sakakura T, 1987. Mammary embryogenesis. In The Mammary Gland: Development, Regulation and function (Neville MC, Daniel CW, eds). New York: Plenum Press, pp. 37–66.

    Google Scholar 

  10. Durnberger H, Heuberger B, Schwartz P, Wasner G, Kratochwil K, 1978. Mesenchyme-mediated effect of testosterone on embryonic mammary epithelium. Cancer Res 38:4066–4070.

    PubMed  CAS  Google Scholar 

  11. Heuberger B, Fitzka I, Wasner G, Kratochwil K, 1982. Induction of androgen receptor formation by epithelium-mesenchyme interaction in embryonic mouse mammary gland. Proc Natl Acad sciUSA 79:2957–2961.

    Article  CAS  Google Scholar 

  12. Wasner G, Hennerman I, Kratochwil K, 1983. Ontogeny of mesechymal androgen receptors in the embryonic mouse mammary gland. Endocrinology 113:1771–1780.

    Article  PubMed  CAS  Google Scholar 

  13. Sakakura T, Sakagumi Y, Nishizuka Y, 1982. Dual origin of mesenchymal tissues participating in mouse mammary embryogenesis. Dev Biol 91:202–207.

    Article  PubMed  CAS  Google Scholar 

  14. Narbaitz K, Stumpf WE, Sar M, 1980. Estrogen receptors in mammary gland primordia of fetal mouse. Anat Embryol 158:161–166.

    Article  PubMed  CAS  Google Scholar 

  15. Raynaud A, Raynaud J, 1954. Les diverses malformations mammaires produites chez les faetus de souris par l'action des hormones sexuelles. C R Soc Biol Paris 148:963–968.

    PubMed  CAS  Google Scholar 

  16. Sakakura T, Nishizuka Y, Dawe CJ, 1979. Capacity of mammary fat pads of adult C3H/HeMs mice to interact morphogenetically with fetal mammary epithelium. J Natl Cancer Inst 63:733–736.

    PubMed  CAS  Google Scholar 

  17. Sakakura T, Sakagumi Y, Nishizuka Y, 1979. Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev Biol 72:201–210.

    Article  PubMed  CAS  Google Scholar 

  18. Grobstein C, 1954. Tissue interaction in the morphogenesis of mouse embryonic rudiments in vitro. In Aspects of Synthesis and Order in Growth (Rednick D, ed). Princetion NJ: Princeton University Press, pp. 233–256.

    Google Scholar 

  19. Kimata K, Sakakura T, Inaguma Y, Kato M, Nishizuka Y, 1985. Participation of two different mesechymes in the developing mouse mammary gland: Synthesis of basement membrane components by fat pad precursor cells. J Embryol Exp Morphol 89:243–257.

    PubMed  CAS  Google Scholar 

  20. Inaguma Y, Kusakabe M, Mackie EJ, Pearson CA, Chiquet-Ehrismann R, Sakakura T, 1988. Epithelial induction of stromal tenascin in the mouse mammary gland: From embryogenesis to carcinogenesis. Dev Biol 128(2):245–255.

    Article  PubMed  CAS  Google Scholar 

  21. Pearson CA, Pearson D, Shibakara S, Hofsteenge J, Chiquet-Ehrismann R, 1988. Tenascin: cDNA cloning and induction by TGF. EMBO J 10:2977–2981.

    Google Scholar 

  22. DeCosse JJ, Grassens CL. Kuzma JF, Unsworth BR, 1973. Breast cancer: Induction of differentiation by embryonic tissue. Science 181:1057–1058.

    Article  PubMed  CAS  Google Scholar 

  23. Sakakura T, Sakagami Y, Nishizuka Y, 1981. Accelerated mammary cancer development by fetal salivary mesenchyme isografted to adult mouse mammary epithelium. J Natl Cancer Inst 66:953–959.

    PubMed  CAS  Google Scholar 

  24. Mackie EJ, Chiquet-Ehrismann R, Pearson CA, Inaguma Y, Taya K, Kawarada Y, Sakakura T, 1987. Tenascin is a stromal marker for epithelial malignancy in the mammary gland. Proc Natl Acad sciUSA 84(13):4621–4625.

    Article  CAS  Google Scholar 

  25. Daniel CW, Silberstein GB, 1987. Postnatal development of rodent mammary gland. In The Mammary Gland: Development, Regulation and Function. (Neville MC, Daniel CW, eds). New York: Plenum Press, pp. 3–36.

    Google Scholar 

  26. Hoshino K, 1978. Mammary transplantation and its histogenesis in mice. In Physiology of Mammary Glands. (Yokoyama A, Mizuno M, Nagasawa H, eds). University Park, MD: University Park Press pp. 163–228.

    Google Scholar 

  27. Daniel CW, Berger JJ, Strickland P, Garcia R, 1984. Similar growth pattern of mouse mammary cells cultivated in collagen matrix in vivo and in vitro. Dev Biol 104:57–64.

    Article  PubMed  CAS  Google Scholar 

  28. Bartley JC, Emerman JJ, Bissell MJ, 1981. Metabolic cooperativity between epithelial cells and adipocytes of mice. Am J Physiol 241:204–208.

    Google Scholar 

  29. Berger JJ, Daniel CW, 1983. Stromal DNA synthesis is stimulated by young, but not serially aged mouse mammary epithelium. Mech Ageing Dev 23:259–264.

    Article  Google Scholar 

  30. Silberstein GB, Daniel CW, 1982. Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev Biol 90:215–222.

    Article  PubMed  CAS  Google Scholar 

  31. Ozzello L, 1970. Epithelial-stromal junction of normal and dysplastic mammary glands. Cancer 25(3):586–600.

    Article  PubMed  CAS  Google Scholar 

  32. Eyden BP, Watson RJ, Harris M, Howell A, 1986. Intralobular stromal fibroblasts in the resting human mammary gland: Ultrastructural properties and intercellular relationships. J Submicrosc Cytol Pathol 18(2):397–408.

    CAS  Google Scholar 

  33. Sheffield LG, Welsch CW, 1988. Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: Influence of mammotrophic hormones on growth of breast epithelia. Int J Cancer 41(5):713–719.

    Article  PubMed  CAS  Google Scholar 

  34. Horgan K, Jones DL, Mansel RE, 1987. Mitogenicity of human fibroblasts in vivo for human breast cancer cells. Br J Surg 74(3):227–229.

    Article  PubMed  CAS  Google Scholar 

  35. Vogel PM, Georgiade NG, Fetter BF, Vogel FS, McCarty KS Jr, 1981. The correlation of histologic changes in the human breast with the menstrual cycle. Am J Pathol 104(1):23–34.

    PubMed  CAS  Google Scholar 

  36. Ozzello L, Spier FD, 1958. The mucopolysaccharides in the normal and diseased breast. Am J Pathol 34;993–1099.

    PubMed  CAS  Google Scholar 

  37. Nandi S, 1958. Endocrine control of mammary gland development and function in the C3H HeCrgl mouse. J Natl Cancer Inst 21:1039–1063.

    PubMed  CAS  Google Scholar 

  38. Coleman S, Silberstein GB, Daniel CW, 1988. Ductal morphogenesis in the mouse mammary gland: Evidence supporting a role for epidermal growth factor. Dev Biol 127:302–315.

    Article  Google Scholar 

  39. Haslam SZ, Shyamala G, 1981. Relative distribution of estrogen and receptors among epithelial, adipose and connective tissues of normal mammary gland. Endocrinology 108:825–830.

    Article  PubMed  CAS  Google Scholar 

  40. Wade GM, Gray JM 1978. Cytoplasmic 17β-[3H]estradiol binding in rat adipose tissues. Endocrinology 103:1695–1700.

    Article  PubMed  CAS  Google Scholar 

  41. Haslam SZ, 1987. Role of sex steroid hormones in normal mammary gland function. In The Mammary Gland: Development, Regulation and function (Neville MC, Daniel CW, eds). New York: Plenum Press, pp. 499–533.

    Google Scholar 

  42. Peterson DW, Hoyer PE, van Deurs B, 1987. Frequency and distribution of estrogen receptor-positive cells in normal nonlactating human breast tissue. Cancer Res 47:5748–5751.

    Google Scholar 

  43. Haslam SZ, Shyamala G, 1979. Effect of oestradiol on progesterone receptors in normal mammary glands and its relationship to lactation. Biochem J 182:127–131.

    PubMed  CAS  Google Scholar 

  44. Roncari DAK, Van RLR, 1978. Promotion of human adipocyte precursor replication by 17β-estradiol in culture. J Clin Invest 47:2091–2098.

    Google Scholar 

  45. Bani G, Begazzi M, 1984. Morphological changes in mouse mammary gland by porcine and human relaxin. Acta Anat 119:149–154.

    Article  PubMed  CAS  Google Scholar 

  46. Edery M, Pang K, Larson L, Colose T, Nandi S, 1985. Epidermal growth factor receptor levels in mouse mammary glands in various physiological states. Endocrinology 117:405–411.

    Article  PubMed  CAS  Google Scholar 

  47. Carpenter G, Cohen S, 1979. Epidermal growth factor. Annu Rev Biochem 48:193–216.

    Article  PubMed  CAS  Google Scholar 

  48. McGrath CM, 1983. Augmentation of the response of normal mammary epithelial cells to estradiol by mammary stroma. Cancer Res 43(3):1355–1360.

    PubMed  CAS  Google Scholar 

  49. Haslam SZ, Levely ML, 1985. Estrogen responsiveness of normal mouse mammary cells in primary cell culture: Association of mammary fibroblasts with estrogenic regulation of progesterone receptors. Endocrinology 116(5):1835–1844.

    Article  PubMed  CAS  Google Scholar 

  50. Haslam SZ, 1986. Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Cancer Res 46(1):310–316.

    PubMed  CAS  Google Scholar 

  51. Emerman JT, Enami J, Pitelka D, Nandi S, 1977. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc Natl Acad sciUSA 74:4466–4470.

    Article  CAS  Google Scholar 

  52. Enami J, Enami S, Koga M, 1983. Growth of normal and neoplastic mouse mammary epithelial cells in primary culture: Stimulation by conditioned medium from mouse mammary fibroblasts. Gann 74:845–853.

    PubMed  CAS  Google Scholar 

  53. Rudland PS, Bennett DC, Warbierton MJ, 1979. Hormonal control of growth and differentiation of cultured rat mammary gland epithelial cells. Cold Springs Harb Conf Cell Prolif 6:677–699.

    CAS  Google Scholar 

  54. Levine JF, Stockdale FE, 1984. 3T3-L1 adipocytes promote the growth of mammary epithelium. Exp Cell Res 151(1):112–122.

    Article  PubMed  CAS  Google Scholar 

  55. Levine JF, Stockdale FE, 1985. Cell-cell interactions promote mammary epithelial cell differentiation. J Cell Biol 100(5):1415–1422.

    Article  PubMed  CAS  Google Scholar 

  56. Wiens D, Park CS, Stockdale FE, 1987. Milk protein expression and ductal morphogenesis in the mammary gland in vitro: Hormone-dependent and-independent phases of adipocyte-mammary epithelial cell interaction. Dev Biol 120(1):245–258.

    Article  PubMed  CAS  Google Scholar 

  57. Li ML, Aggeler J, Farson DA, Hattier C, Hassell J, Bissell MJ, 1988. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Aci USA 84:136–140.

    Article  Google Scholar 

  58. Bandyopadhyay GK, Imagawa W, Wallace D, Nandi S, 1987. Linoleate metabolites enhance the in vitro proliferative response of mouse mammary epithelial cells to epidermal growth factor. J Biol Chem 262:2750–2756.

    PubMed  CAS  Google Scholar 

  59. Levay-Young BK, Bandyopadhyay GK, Nandi S, 1987. Linoleic acid but not cortisol, stimulates accumulation of casein by mouse mammary epithelial cells in serum-free collagen gel culture. Proc Natl Acad sci84:8448–8452.

    Article  Google Scholar 

  60. Tremblay G, 1979. Stromal aspects of breast carcinoma. Exp Mol Pathol 31:248–260.

    Article  PubMed  CAS  Google Scholar 

  61. Tamimi SO, Ahmed A, 1986. Stomal changes in early invasive and non-invasive breast carcinoma: An ultrastructural study. J Pathol 150(1):43–49.

    Article  PubMed  CAS  Google Scholar 

  62. Tamimi SO, Ahmed A, 1987. Stromal changes in invasive breast carcinoma: An ultra-structural study. J Pathol 153(2): 163–170.

    Article  PubMed  CAS  Google Scholar 

  63. Sappino AP, Skalli O, Jackson B, Schurch W, Gabbiani G, 1988. Smooth-muscle differentiation in stromal cells of malignant and nonmalignant breast tissues. Int J Cancer 41(5):707–712.

    Article  PubMed  CAS  Google Scholar 

  64. Aryan S, Enriquez R, Krizek TJ, 1978. Wound contraction and fibrocontractive disorders. Arch Surg 113:1034–1046.

    Article  Google Scholar 

  65. Ormerod EJ, Warburton MJ, Gusterson B, Hughes CM, Rudland PS, 1985. Abnormal deposition of basement membrane and connective tissue components in dimethylbenzan-thracene-induced rat mammary tumours: An immunocytochemical and ultrastructural study. Histochem J 17(10):1155–1166.

    Article  PubMed  CAS  Google Scholar 

  66. Russo J, McGrath C, Russo IH, 1976. An experimental animal model for the study of human scirrhous carcinoma. J Natl Cancer Inst 57(6):1253–1259.

    PubMed  CAS  Google Scholar 

  67. Kao RT, Hall J, Engel L, Stern R, 1984. The matrix of human breast tumor cells is mitogenic for fibroblasts. Am J Pathol 115(1): 109–116.

    PubMed  CAS  Google Scholar 

  68. Elliott BE, Maxwell MA, Wei WA, Miller FR, 1988. Expression of epithelial-like markers and class I major histocompatibility antigens by a murine carcinoma growing in the mammary gland and in metastases: Orthotopic site effects. Cancer Res 24:7237–7245.

    Google Scholar 

  69. Lynch HT, Albano WA, Heieck, 1984. Genetics, biomarkers and control of breast cancer: A review. Cancer Genet Cytogenet 13:43–92.

    Article  PubMed  CAS  Google Scholar 

  70. Azzarone B, Mareel M, Billard C, Scemama P, Chaponnier C, Macieira-Coelho A, 1984. Abnormal properties of skin fibroblasts from patients with breast cancer. Int J Cancer 33(6):759–764.

    Article  PubMed  CAS  Google Scholar 

  71. Durning P, Schor SL, Sellwood RA, 1984. Fibroblasts from patients with breast cancer show abnormal migratory behaviour in vitro. Lancet 2(8408):890–892.

    Article  PubMed  CAS  Google Scholar 

  72. Schor SL, Haggie JA, Durning P, Howell A, Smith L, Sellwood RA, Crowther D, 1986. Occurrence of a fetal fibroblast phenotype in familial breast cancer. Int J Cancer 37(6):831–836.

    Article  PubMed  CAS  Google Scholar 

  73. Azzarone B, Macieira-Coelho A, 1987. Further characterization of the defects of skin fibroblasts from cancer patients. J Cell sci 87(Part 1):155–162.

    PubMed  Google Scholar 

  74. Haggie JA, Sellwood RA, Howell A, Birch JM, Schor SL, 1987. Fibroblasts from relatives of patients with hereditary breast cancer show fetal-behaviour in vitro. Lancet 1(8548): 1455–1457.

    Article  PubMed  CAS  Google Scholar 

  75. Shor SL, Shor AM, Grey AM, Rushton G, 1988. Fetal and cancer patient fibroblasts produce an autocrine migration stimulating factor not made by normal adult cells. J Cell sci90:391–399.

    Google Scholar 

  76. Dickson RB, Lippman ME, 1988. Control of human breast cancer growth by estrogen, growth factors and oncogenes. In Breast Cancer: Cellular and Molecular Biology (Lippman ME, Dickson R, eds). Boston: Kluwer Academic Publishing, pp. 119–165.

    Chapter  Google Scholar 

  77. Adams EF, Newton CJ, Tait GH, Braunsberg H, Reed MJ, James VH, 1988. Paracrine influence of human breast stromal fibroblasts on breast epithelial cells: Secretion of a polypeptide which stimulates reductive 17 beta-oestradiol dehydrogenase activity. Int J Cancer 42(1):119–122.

    Article  PubMed  CAS  Google Scholar 

  78. Adams EF, Newton CJ, Braunsberg H, Shaikh N, Ghilchik M, James VH, 1988. Effects of human breast fibroblasts on growth and 17 beta-estradiol dehydrogenase activity of MCF-7 cells in culture. Breast Cancer Res Treat 11(2):165–172.

    Article  PubMed  CAS  Google Scholar 

  79. McNeill JM, Reed MJ, Beranek PA, Newton CJ, Ghilchik M, James VHT, 1986. The effect of EGF, transforming growth factor and breast tumor homogenates on the activity of oestradiol 17-β hydroxysteroid dehydrogenase in cultured adipose tissue. Cancer Lett 31:213–219.

    Article  PubMed  CAS  Google Scholar 

  80. Lowenstein WR, 1981. Junctional intercellular communication: The cell-to-cell membrane chanel. Physiol Rev 61:829–913.

    Google Scholar 

  81. Hamada J, Takeichi N, Kobayashi H, 1988. Metastatic capacity and intercellular communication between normal cells and metastatic cell clones derived from a rat mammary carcinoma. 48(18):5129–5132.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haslam, S.Z. (1991). Stromal-epithelial interactions in normal and neoplastic mammary gland. In: Lippman, M.E., Dickson, R.B. (eds) Regulatory Mechanisms in Breast Cancer. Cancer Treatment and Research, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3940-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3940-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6758-1

  • Online ISBN: 978-1-4615-3940-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics