Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 121))

Abstract

It is reasoned that intramyocardial pressure (IMP) and ventricular pressure result from the varying stiffness of the cardiac muscle. This varying elastance concept, well known for the ventricular lumen, should also be applied to interstitial spaces. Since pressure depends on the momentary value of the time-varying elastance and the momentary volume (ventricular lumen and interstitial volume, respectively), ventricular and IMP ventricular pressure are not necessarily related. Therefore, IMP should not be viewed as the result of pressure in the ventricular lumen but as a direct result of cardiac muscle contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krams R, Sipkema P, Westerhof N: Can coronary systolic-diastolic flow differences be predicted by left ventricular pressure or time-varying intramyocardial elastance? Basic Res Cardiol 1989;84:149–159.

    Article  PubMed  CAS  Google Scholar 

  2. Krams R, Sipkema P, Westerhof N: Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 1989;257:H1471–H1479.

    PubMed  CAS  Google Scholar 

  3. Suga H, Sagawa K, Shoukas AA: Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 1973;32:314–322.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson JR, DiPalma JR: Intramyocardial pressure and its relation to aortic blood pressure. Am J Physiol 1939;125:234–243.

    Google Scholar 

  5. Nematzadeh D, Rose JC, Schryver TH, Huang HK, Kot PA: Analysis of methodology for measurement of intramyocardial pressure. Basic Res Cardiol 1984;79:86–97.

    Article  PubMed  CAS  Google Scholar 

  6. Westerhof N: Intramyocardial pressure. Basic Res Cardiol 1990;85:105–119

    Article  PubMed  CAS  Google Scholar 

  7. Gregg DE, Eckstein RW: Measurements of intramyocardial pressure. Am J Physiol 1941;132:781–790.

    Google Scholar 

  8. Salisbury PF, Cross CE, Rieben PA: Intramyocardial pressure and strength of left ventricular contraction. Cire Res 1962;10:608–623.

    Article  CAS  Google Scholar 

  9. Baird RJ, Manktelow RT, Shah PA, Ameli FM: Intramyocardial pressure. The persistence of its transmural gradient in the empty heart and its relationship to myocardial oxygen consumption. J Thoracic and Cardiovasc Surg 1972;64:635–646.

    CAS  Google Scholar 

  10. Laszt L, Mueller A: Der Myokardiale Druck. Helv Physiol Acta 1958; 16:88–106.

    CAS  Google Scholar 

  11. Kreuzer H, Schoeppe W: Zur Entstehung der Differenz zwischen systolischem Myokard-und Ventrikeldruck. Pflügers Arch 1963;278:199–208.

    Article  CAS  Google Scholar 

  12. Armour JA, Randall WC: Canine left ventricular intramyocardial pressures. Am J Physiol 1971;220:1833–1839.

    PubMed  CAS  Google Scholar 

  13. Rabbany SY, Kresch JY, Noordergraaf N: Intramyocardial pressure: interaction of myocardial fluid pressure and fibre stress. Am J Physiol 1989;257:H357–H364.

    PubMed  CAS  Google Scholar 

  14. Heineman FW, Grayson J: Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 1985;249:H1216–H1223.

    PubMed  CAS  Google Scholar 

  15. Brandi G, McGregor M: Intramural pressure in the left ventricle of the dog. Cardiovasc Res 1969;3:472–475.

    Article  PubMed  CAS  Google Scholar 

  16. Kreuzer H, Schoeppe W: Das Verhalten des Druckes in der Herzwand. Pflügers Arch 1963;278:181–198.

    Article  CAS  Google Scholar 

  17. Kreuzer H, Schoeppe W: Der Myokarddruck bei vernederter Coronardurchblutung und bei Ischemie. Pflügers Arch 1963;278:209–220.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Westerhof, N. (1991). Intramyocardial Pressure Revisited. In: Sideman, S., Beyar, R., Kléber, A.G. (eds) Cardiac Electrophysiology, Circulation, and Transport. Developments in Cardiovascular Medicine, vol 121. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3894-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3894-3_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6737-6

  • Online ISBN: 978-1-4615-3894-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics