Skip to main content

Biosynthesis of Flavonoids

  • Chapter
Plant Polyphenols

Part of the book series: Basic Life Sciences ((BLSC,volume 59))

Abstract

The plant aromatic pathway consists of three segments: the shikimate pathway segment that produces the aromatic amino acids phenylalanine, tyrosine, and tryptophan; the phenylpropanoid segment that produces the cinnamic acid derivatives that are precursors of flavonoids and the plant structural component lignin; and the flavonoid segment that produces the diverse flavonoid compounds. There is evidence that the three different sections should be treated as one metabolic unit and referred to as plant aromatic metabolism. Evidence further suggests that the aromatic metabolism is present early in plant development, at the stage when tissues differentiate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jahnen, W.; Hahlbrock, K. Differential regulation and tissue-specific distribution of enzymes of phenylpropanoid pathway. Planta 173:453–458 (1988).

    Article  CAS  Google Scholar 

  2. Zobel, A.M.; Hrazdina, G. [unpublished results].

    Google Scholar 

  3. Clowes, F.A.L.; Macdonald, M.M. Cell cycling and the fate of potato buds. Ann.. Bot. 59:141–148 (1987).

    Google Scholar 

  4. Gonthier, R.; Jacqmard, A.; Bernier, G. Occurrence of two cell subpopulations with different cell-cycle durations in the central and peripheral zones of the vegetative shoot apex of Sinapis alba L. Planta 165:288–291 (1985).

    Article  Google Scholar 

  5. Mauseth, J.D. A morphometric study of the ultrastructure of Echinocereus engelsmannii (Cactaceae). I. Shoot apical meristems at germination. Amer. J. Bot. 67:173–181 (1980).

    Article  Google Scholar 

  6. Mauseth, J.D. Effect of growth rate, morphogenic activity, and phylogeny on shoot apical ultrastructure in Opuntia polyacantha (Cactaceae). Amer. J. Bot. 71:1283–1292 (1984).

    Article  Google Scholar 

  7. Auderset, G.; Gahan, P.B.; Oniya, G.O.C.; Greppin, H. Increased pentose phosphate pathway activity linked to floral induction in apices of Spinacia oleracea during short days. Ann.. Bot. 55:61–64 (1985).

    CAS  Google Scholar 

  8. Hrazdina, G.; Zobel, A.M.; Hoch, H.C. Biochemical, immunological and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proc. Natl. Acad. Sci.USA 84:8966–8970 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. Hahlbrock, K.; Knobloch, K.H.; Kreuzaler, F.; Potts, J.R.M.; Wellmann, E. Coordinated induction and subsequent activity change of two groups of metabolically interrelated enzymes. Light induced synthesis of flavonoid glycosides in cell suspension cultures of Pttroselinum crispum. Eur. J. Biochem. 61:199–206 (1976).

    Article  PubMed  CAS  Google Scholar 

  10. Hrazdina, G.; Wagner, G.J. 1985. Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch. Biochem. Biophys. 237:88–100.

    Article  PubMed  CAS  Google Scholar 

  11. Dyer, W.E.; Henstrand J.M.; Handa, A.K.; Herrmann, K.M. Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proc. Natl. Acad. Sci. USA 86:7370–7373 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. Schnarrenberger, C; Oeser, A.N.; Tolbert, A. Two isozymes each of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in spinach leaves. Arch. Biochem. and Biophys. 154:438–448 (1973).

    Article  CAS  Google Scholar 

  13. Dennis, D.T.; Miernyk, J.A. Compartmentation of nonphotosynthetic carbohydrate metabolism. Annu. Rev. Plant Physiol. 33:27–50 (1982).

    Article  CAS  Google Scholar 

  14. Rubin, J.L.; Jensen, R.A. Differentially regulated isozymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from seedlings of Vigna radiata[L.] Wilczek. Plant Physiol. 79:711–718 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. Kressin-Muday, G.; Poling, M.D.; Herrmann, K.M. Immunological analysis of the first enzyme in the shikimate pathway of potato. Plant Physiol. 89:55 (1989).

    Google Scholar 

  16. Morris, P.F.; Doong, R-L.; Jensen, R.A. Evidence from Solanum tuberosum in support of the dual pathway hypothesis of aromatic biosynthesis. Plant Physiol. 89:10–14 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. Ganson, R.J.; D’Amato, T.A.; Jensen, R.A. The two isozyme systems of 3-deoxy-Darabino-heptulosonate 7-phosphate synthase in Nicotiana silvestris and other higher plants. Plant Physiol. 82:203–210 (1986).

    Article  PubMed  CAS  Google Scholar 

  18. Goers, S.K.; Jensen, R.A. Separation and characterization of two chorismate-mutase isoenzymes from Nicotiana sihtstris cell cultures. Planta 162:109–116 (1984).

    Article  CAS  Google Scholar 

  19. Goers, S.K.; Jensen, R.A. The differential allosteric regulation of two chorismate mutase isoenzymes of Nicotiana silvestris. Planta 162:117–124 (1984).

    Article  CAS  Google Scholar 

  20. Singh, B.K.; Connelly, J.A.; Conn, E.E. Chorismate mutase isozymes from Sorghum bicolor. purification and properties. Arch. Biochem. Biophys. 243:374–384 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. Rubin, J.L.; Gaines, C.G.; Jensen, R.A. Enolpyruvylshikimate phosphate synthase from suspension cultured cells of Nicotiana silvestris. Plant Physiol. 75:839–845 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. Ream, J.L.; Steinrucken, M.C.; Porter, C.A.; Sikorski, J.A. Purification and properties of 5-enolpyruvylshikimate-5-phosphate synthase from dark grown seedlings of Sorghum bicolor. Plant Physiol. 82:230–238 (1988).

    Google Scholar 

  23. Mousdale, D.M.; Coggins, J.R. Subcellular localization of the common shikimate-pathway enzymes in Pisum sativum L. Planta 163:241–249 (1985).

    Article  CAS  Google Scholar 

  24. Mousdale, D.M.; Campbell, M.S.; Coggins, J.R. Purification and characterization of bi-functional dehydroquinase-shikimate: NADP oxidoreductase from pea seedlings. Phytochemistry 26:2665–2670 (1987).

    Article  CAS  Google Scholar 

  25. Fiedler, E.; Schultz, G. Localization, purification and characterization of shikimate oxido-reductase-dehydroquinate hydrolase from stroma of spinach chloroplasts. Plant Physiol. 79:212–218 (1989).

    Article  Google Scholar 

  26. Koshiba, T. Purification of two forms of the associated 3-dehydroquinate hydro-lyase and shikimate: NADP+ oxidoreductase in Phaseolus mungo seedlings. Biochim. Biophys. Acta 522:10–18 (1978).

    Article  PubMed  CAS  Google Scholar 

  27. Charriere-Ladreix, Y.; Tissut, M. Foliar flavonoid distribution during chloroplast isolation. Planta 151:309–913 (1981).

    Article  CAS  Google Scholar 

  28. Weissenboeck, G.; Fleing, I.; Ruppel, H.G. Untersuchungen zur Lokalisation von Flavonoiden in Piastiden. I. Flavonoide in Etioplasten von Avena sativa L. Z. Naturforschg. 27:1216–1224 (1972).

    CAS  Google Scholar 

  29. Hrazdina, G.; Wagner, G.J.; Siegelman, H.W. Subcellular localization of enzymes of anthocyanin biosynthesis in protoplasts. Phytochemistry 17:53 (1978).

    Article  CAS  Google Scholar 

  30. Hrazdina, G.; Alscher-Herman, R.; Kish, V.M. Subcellular localization of flavonoid synthesizing enzymes in Pisum, Phaseolus, Brassica and Spinacia cultivars. Phytochemistry 19:1355 (1980).

    CAS  Google Scholar 

  31. Marx, G.A. Argenteum: A mutant under nuclear and extra nuclear control. Pisum Newsl. 10:34–37 (1978).

    Google Scholar 

  32. Hoch, H.C.; Pratt, C; Marx, G.A. Subepidermal air spaces:basis for the phenotypic expression of the Argenteum mutant of Pisum. Amer. J. Bot. 67:905–911 (1980).

    Article  Google Scholar 

  33. Hrazdina, G.; Marx, G.A.; Hoch, H.C. Distribution of secondary plant metabolites and their biosynthetic enzymes in pea (Pisum sativum L.) leaves. Plant.Physiol. 70:745–748 (1982).

    Article  PubMed  CAS  Google Scholar 

  34. Jahnen, W.; Hahlbrock, K. Cellular localization of nonhost resistance reactions of parsley (Petroselinum crispum). Planta 173:197–204 (1988).

    Article  CAS  Google Scholar 

  35. Jensen, R.A. Tyrosine and phenylalanine biosynthesis: Relationship between alternative pathways, regulation and subcellular location. Rec. Adv. Phytochem. 20:57–82 (1986).

    CAS  Google Scholar 

  36. Hanson, K.R.; Havir, E.A. Phenylalanine ammonia-lyase. In: Conn, E.E. (ed.) The biochemistry of plants.Vol 7.Secondary plant products. Academic Press, New York. pp. 577–625 (1981).

    Google Scholar 

  37. Cramer, C.L.; Edwards, K.; Dron, M.; Liang, X.; Dildine, S.L.; Bolwell, G.P.; Dixon, R.A.; Lamb, C.J.; Schuch, W. Phenylalanine ammonia lyase gene organization and structure. Plant Mol. Biol. 12:367–383 (1989).

    Article  CAS  Google Scholar 

  38. Liang, X.; Dron, M.; Cramer, CL.; Dixon, R.A.; Lamb, C.J. Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues. J. Biol. Chem. 264:14486–14492 (1989).

    PubMed  CAS  Google Scholar 

  39. Kuhn, D.N.; Chapell, J.; Boudet, A.; Hahlbrock, K. Induction of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase m-RNAS in cultured parsley cells. Proc.Natl.Acad. Sci. USA 81:1102–1106 (1984).

    Article  PubMed  CAS  Google Scholar 

  40. Lois, R.; Dietrich, A.; Hahlbrock, K.; Schulz, W. A phenylalanine ammonia lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J. 8:1641–1648 (1989).

    PubMed  CAS  Google Scholar 

  41. Amrhein, N.; Zenk, M.H. Untersuchungen zur Rolle der Phenylalanine Ammonia Lyase (PAL) bei der Regulation der Flavonoidsynthese in Buchweizen (Fagopyrum esculentum Moench). Z. Pflanzenphysiol. 64:145–168 (1971).

    CAS  Google Scholar 

  42. Czichi, U.; Kindl, H. Formation of p-coumaric acid and o-coumaric acid from L-phenylalanine by microsomal membrane fractions from potato: evidence of membrane-bound enzyme complexes. Planta 125:115–125 (1975).

    CAS  Google Scholar 

  43. Czichi, U.; Kindl, H. Phenylalanine ammonia lyase and cinnamic acid hydroxylases as assembled consecutive enzymes on microsomal membranes of cucumber cotyledons: cooperation and subcellular distribution. Planta 134:133–143 (1977).

    Article  CAS  Google Scholar 

  44. Mavandad, M.; Edwards, R.; Liang, X.; Lamb, C.J.; Dixon, R.A. Effects of trans-cinnamic acid on expression of the bean phenylalanine ammonia-lyase gene family. Plant Physiol. 94:671–680 (1990).

    Article  PubMed  CAS  Google Scholar 

  45. Kreuzaler, F.; Light, R.J.; Hahlbrock, K. Flavanone synthase catalyzes C02 exchange and decarboxylation of malonyl-CoA. FEBS Letters. 94:175–178 (1978).

    Article  CAS  Google Scholar 

  46. Hrazdina, G; Kreuzaler, F.; Hahlbrock, K.; Grisebach, H. Substrate specificity of flavanone synthase from cell suspension cultures of parsley and structure of release products in itvitro. Arch. Biochem. Biophys. 175:392 (1976).

    Article  PubMed  CAS  Google Scholar 

  47. Kreuzaler, F.; Hahlbrock, K. Enzymatic synthesis of aromatic compounds in higher plants: formation of naringenin (5,7,4-triydroxyflavanone) from p-coumaryl Coenzyme A and mal-onyl Coenzyme A. FEBS Letters. 28:69 (1972).

    Article  PubMed  CAS  Google Scholar 

  48. Heller, W.; Hahlbrock, K. Highly purified flavanone synthase from parsley catalyzes the formation of naringenin chalcone. Arch. Biochem. Biophys. 200:617–619 (1980).

    Article  PubMed  CAS  Google Scholar 

  49. Hahlbrock, K.; Scheel, D. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:347–369.

    Google Scholar 

  50. Koes, R.E.; Spelt, C.E.; Mol, J.N.M.; Gerats, A.G.M. The chalcone synthase multigene family of Petunia hybrida (V30): sequence homology, chromosomal localization and evolutionary aspects. Plant Mol. Biol. 10:375–385 (1987).

    Article  Google Scholar 

  51. Mol, J.N.M.; Stuitje, A.R.; van der Krol, A. Genetic manipulation of floral pigmentation genes. Plant Mol. Biol. 13:287–294 (1989).

    Article  PubMed  CAS  Google Scholar 

  52. Dewick, P.M. Isoflavonoids. In: Harborne, J.B.; Mabry, T.J. (eds.) The flavonoids: advances in research. Chapman and Hall, London. 535–640 (1982).

    Google Scholar 

  53. Ayabe, S-I.; Udagawa, A.; Furuya, T. NAD(P)H-dependent 6’-deoxychalcone synthase activity in Glycyrrhiza echinata cells induced. Arch.Biochem.Biophys. 261:458–462 (1988).

    Article  PubMed  CAS  Google Scholar 

  54. Dewick, P.M.; Steele, M.J.; Dixon, R.A.; Whitehead, I.M. Biosynthesis of isoflavonoid phytoalexins: incorporation of sodium 1,2-14C acetate into phaseollin and kievitone. Z. Naturforsch. 37:363–368 (1982).

    Google Scholar 

  55. Stoessl, A.; Stothers, J.B. The incorporation of [1.2-14C] acetate into pisatin to establish the biosynthesis of its polyketide moiety. Z. Naturforsch. 34:87–89 (1979).

    Google Scholar 

  56. Welle, R.; Grisebach, H. Isolation of a novel NADPH-dependent reductase which coacts with chalcone synthase in the biosynthesis of 6’-deoxychalcone. FEBS Letters 236:221–225 (1988).

    Article  CAS  Google Scholar 

  57. Hrazdina, G.; Jensen, R.A. Multiple parallel pathways in plant aromatic metabolism? In: Srere, P.; Jones, M.E.; Mathews, C.K. (eds.) Structural and organizational aspects of metabolic regulation, Alan R. Liss, Inc., New York. 27–41 (1990).

    Google Scholar 

  58. Hrazdina, G.; Wagner, G.J. Compartmentation of plant phenolic compounds; sites of synthesis and accumulation. In: Van Sumere, CF.; Lea, P.J. (eds.). Annual proceedings of the Phytochemical Society of Europe. Vol. 25. Clarendon Press, Oxford. 120–133 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hrazdina, G. (1992). Biosynthesis of Flavonoids. In: Hemingway, R.W., Laks, P.E. (eds) Plant Polyphenols. Basic Life Sciences, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3476-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3476-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6540-2

  • Online ISBN: 978-1-4615-3476-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics