Skip to main content

Activity of Phenolics in Insects: The Role of Oxidation

  • Chapter
Plant Polyphenols

Part of the book series: Basic Life Sciences ((BLSC,volume 59))

Abstract

Attempts to characterize tannin activity in biological systems have met with mixed success. Although there are many examples in which tannins inhibit fungal, bacterial, and/or viral growth, there are also many failures to find such activity. It has proven especially difficult to characterize tannin activity in insect herbivores, even when polyphenols comprise a large fraction of the diet and the insect appears to suffer as a consequence. The affinity of polyphenols for various substrates (e.g., proteins) varies with the physiochemical conditions in which the complexation or reaction takes place. We postulate that variation among insect species in midgut conditions, mainly redox potential and pH, yields variable impacts of phenolics on insects. Redox conditions and pH are influenced by intrinsic physiological characteristics of the insect and by foliar oxidative enzymes, non-enzymatic oxidants, and reductants. Many insects appear to possess adaptations that relate directly to the oxidative state of ingested phenolics. In many cases, oxidative activation may be necessary before biological impacts can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Harborne, J.B. Flavonoid pigments. In: Rosenthal, G.A.; Janzen, D.H. (eds.) Herbivores: their interactions with secondary plant metabolites. Academic Press, New York, p. 619 (1979).

    Google Scholar 

  2. Harborne, J.B. Nature, distribution, and function of plant flavonoids. In: Cody, V.; Middleton, E. Jr.; J. Harborne, J.B. (eds.) Plant flavonoids in biology and medicine. Alan R. Liss, New York, p. 15 (1986).

    Google Scholar 

  3. Swain, T. Tannins and lignins. In: Rosenthal, G.A.; Janzen, D.H. (eds.) Herbivores: their interactions with secondary plant metabolites. Academic Press, New York, p. 657 (1979).

    Google Scholar 

  4. Feeny, P.P. Plant apparency and chemical defense. Recent Adv. Phytochemistry 10:1 (1976).

    CAS  Google Scholar 

  5. Rhoades, D.F.; Cates, R.G. Towards a general theory of plant antiherbivore chemistry. Recent Adv. Phytochemistry 10:168 (1976).

    CAS  Google Scholar 

  6. Coley, P.D.; Bryant, J.P.; Chapin, F.S. III. Resource availability and plant antiherbivore defense. Science 230:895 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. Schultz, J.C. Tannin-insect interactions. In: Hemingway, R.W.; Karchesy, J. J. (eds.) Chemistry and significance of condensed tannins. Plenum Press, New York, p. 417 (1989).

    Chapter  Google Scholar 

  8. Felton, G.W.; Duffey, S.S. Inactivation of baculovirus by quinones formed in insect-damaged plant tissues. J. Chem. Ecol. 16:1221 (1990).

    Article  CAS  Google Scholar 

  9. Hedin, P.A.; Lindig, O.H.; Sikorowski, P.P.; Wyatt, M. Suppressants of gut bacteria in the boll weevil from the cotton plant. J. Econ. Entomol. 71:294 (1978).

    Google Scholar 

  10. Koike, S.; Iizuka, T.; Mizutani, J. Determination of caffeic acid in the digestive juice of silkworm larvae and its antibacterial activity against the pathogenic Streptoccus faecalis AD-4. Agric. Biol. Chem. Jpn. 43:1727 (1979).

    Article  CAS  Google Scholar 

  11. Ludlum, CT.; Feiton, G.W.; Duffey, S.S. Plant defenses: chlorogenic acid and polyphenol oxidase enhance toxicity of Bacillus thuringiensis suhsp. kurstaki to Heliothis zea. J. Chem. Ecol. 17:217 (1991).

    Article  CAS  Google Scholar 

  12. Schultz, J.C; Keating, S.T. Host-plant mediated interactions between the gypsy moth and a baculovirus. In: Barbosa, P.; Krischik, V.A.; Jones, C.G. (eds.) Microbial mediation of plant-herbivore interactions. Wiley and Sons, New York, p. 489 (1991).

    Google Scholar 

  13. Taper, M.L; Zimmerman, E.R.; Case, T.J. Sources of mortality for a cynipid gall-wasp (Dryocosmus dubiosus (Hymenoptera: Cynipidae)): the importance of the tannin/fungus interaction. Oecologia 68:437 (1986).

    Article  Google Scholar 

  14. Feeny, P.P. Effect of oak leaf tannins on larval growth of the winter moth Operophtera brumata. J. Insect Physiol. 14:805 (1968).

    Article  CAS  Google Scholar 

  15. Feeny, P. P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:561 (1970).

    Article  Google Scholar 

  16. Bernays, E.A. Tannins: an alternative viewpoint. Ent. Exp. Appl. 24:44 (1978).

    Article  Google Scholar 

  17. Bernays, E.A. Plant tannins and insect herbivores: an appraisal. Ecol. Entomol. 6:353 (1981).

    Article  Google Scholar 

  18. Martin, M.M.; Martin, J.S. Surfactants: their role in preventing the precipitation of proteins in insect guts. Oecologia 61:342 (1984).

    Article  Google Scholar 

  19. Martin, J.S.; Martin, M.M.; Bernays, E.A. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implication for theories of plant defense. J. Chem. Ecol. 13:605 (1987).

    Article  CAS  Google Scholar 

  20. Loomis, W.D. Overcoming problems of phenolic and quinones in the isolation of plant enzymes and organelles. Methods Enzym. 54:528 (1974).

    Article  Google Scholar 

  21. Hagerman, A.E.; Klucher, K.M. Tannin-protein interactions. In: Cody, V.; Middleton, E. Jr.; Harborne, J.B. (eds.) Plant flavonoids in biology and medicine. Alan R. Liss, New York, p. 67 (1986).

    Google Scholar 

  22. Hagerman, A.E. Chemistry of tannin-protein complexation. In: Hemingway, R.W.; Karchesy, J.J. (eds.) Chemistry and significance of condensed tannins. Plenum Press, New York, p. 323 (1989).

    Chapter  Google Scholar 

  23. Ya, C; Gaffney, S.H.; Lilley, T.H.; Haslam, E. Carbohydrate-polyphenol complexation. In: Hemingway, R.W.; Karchesy, J.J. (eds.) Chemistry and significance of condensed tannins. Plenum Press, New York, p. 307 (1989).

    Google Scholar 

  24. Appel, H.M.; Martin, M.M. Redox conditions in herbivorous lepidopteran larvae. J. Chem. Ecol. 12:3277 (1990).

    Article  Google Scholar 

  25. Duffey, S.S.; Felton, G.W. Plant enzymes in resistance to insects. In: Whitaker, J.R.; Sonnett, P.E. (eds.) Biocatalysis in agricultural biotechnnology. Amer. Chemical Society, Symposium Series, Washington, D.C., p. 289 (1989).

    Chapter  Google Scholar 

  26. Hagerman, A.E.; Robbins, C.T. Implication of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms. J. Chem. Ecol. 13:1243 (1987).

    Article  CAS  Google Scholar 

  27. Oh, H.I.; Hoff, J.E.; Armstrong, G.S.; Haff, L.A. Hydrophobic interaction in tannin-protein complexes. J. Agric. Food Chem. 28:394 (1980).

    Article  CAS  Google Scholar 

  28. Martin, M.M.; Rockhohn, D.D.; Martin, J.S. Effects of surfactants, pH, and certain cations on precipitation of proteins by tannins. J. Chem. Ecol. 11:485 (1987).

    Article  Google Scholar 

  29. Schultz, J.C.; DeVeau, E. Reassessment of the interaction between gut detergents and phenolics in Lepidoptera and significance for gypsy moth larvae, [submitted to J. Chem. Ecol.].

    Google Scholar 

  30. Berenbaum, M. Adaptive significance of midgut pH in larval Lepidoptera. Am.Nat. 115:138 (1980).

    Article  Google Scholar 

  31. Martin, M.M.; Kukor, J.J.; Martin, J. S.; Lawson, D.L.; Merritt, R.W. Digestive enzymes of larvae of three species of caddisflies (Trichoptera). Insect Biochem. 11:501 (1981).

    Article  CAS  Google Scholar 

  32. Martin, M.M.; Martin, J.S.; Kukor, J.J.; Merritt, R.W. The digestive enzymes of detritus-feeding stonefly nymphs (Plecoptera: Pteronarcyidae). Can. J. Zool. 59:1947 (1981).

    Article  CAS  Google Scholar 

  33. Schultz, J.C.; Lechowicz, M.J. Hostplant, larval age and feeding behavior influence midgut pH in the gypsy moth (Lymantria dispar). Oecologia 71:153 (1986).

    Article  Google Scholar 

  34. Appel, H.M.; Schultz, J.C.; [unpublished results].

    Google Scholar 

  35. Hemingway, R.W. Reactions at the interflavanoid bond of proanthocyanidins. In: Hemingway, R.W.; Karchesy, J.J. (eds.) Chemistry and significance of condensed tannins. Plenum Press, New York, p. 265 (1989).

    Chapter  Google Scholar 

  36. Keating, S.T.; Schultz, J.C.; Yendol, W.G. The effect of diet on gypsy moth (Lymantria dispar) larval midgut pH, and its relationship with larval susceptibility to a baculovirus. J. Invert Path. 56:317 (1990).

    Article  Google Scholar 

  37. MacManus, J.P.; Davis, K.G.; Beart, J.E.; Gaffney, S.H.; Lilley, T.H.; Haslam, E. Polyphe-nol interactions. Part 1. Introduction; some observations on the reversible complexation of polyphenols with proteins and polysaccharides.J. Chem.Soc. Perkin Trans. 2:1429 (1985).

    Article  Google Scholar 

  38. Felton, G.W.; Donato, K., Del Vecchio, R.J., Duffey, S.S. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15:2667 (1989).

    Article  CAS  Google Scholar 

  39. Cheynier, V.; Basire, N.; Rigaud, J. Mechanism of trans-caffeoyltartaric acid and catechin oxidation in model solutions containing grape polyphenoloxidase. J. Agric. Food Chem. 37:1069 (1989).

    Article  CAS  Google Scholar 

  40. Cheynier, V.; Rigaud, J.; Moutounet, M. Oxidation kinetics of trans-caffeoyltartrate and its glutathione derivatives in grape musts. Phyto chemistry 29:1751 (1990).

    CAS  Google Scholar 

  41. Miles, P.W.; Peng, Z. Studies on the salivary physiology of plant bugs: detoxification of phytochemicals by the salivary peroxidase of aphids. J. Insect Physiol. 35:865 (1989).

    Article  CAS  Google Scholar 

  42. Peng, Z.; Miles, P. Acceptability of catechin and its oxidative condensation products to the rose aphid, Macrosiphum rosac. Ent. Exp. & Appl. 47:255 (1988).

    Article  CAS  Google Scholar 

  43. Peng, Z.; Miles, P. Studies on the salivary physiology of plant bugs: function of the catechol oxidase of the rose aphid. J. Insect Physiol. 34:1027 (1988).

    Article  CAS  Google Scholar 

  44. Larson, R.A. The antioxidants of higher plants. Phyto chemistry 27:969 (1988).

    CAS  Google Scholar 

  45. Smith, M.T. Quinones as mutagens, carcinogens, and anticancer agents: introduction and overview. J. Toxic. Environ. Health 16:665 (1985).

    Article  CAS  Google Scholar 

  46. Kappus, H. Overview of enzyme systems involved in bioreduction of drugs and in redox cycling. Biochem. Pharm. 35:1 (1986).

    Article  PubMed  CAS  Google Scholar 

  47. Ahmad, S.; Pritsos, CA.; Bowen, S.M.; Kirkland, K.E.; Blomquist, G.J.; Pardini, R.S. Activities of enzymes that detoxify Superoxide anion and related toxic oxyradicals in Trichoplusia ni. Arch. Biochem. Physiol. 6:85 (1987).

    Article  CAS  Google Scholar 

  48. Ahmad, S.; Pristos, CA.; Bowen, S.M.; Heisler, C.R.; Blomquist, G.J.; Pardini, R.S. Antioxidant enzyzmes of larvae of the cabbage looper moth, Trichoplusia ni: subcellular distribution and activities of Superoxide dismutase, catalase, and glutathione reductase. Free Rad. Res.Comms. 4:403 (1988).

    Article  CAS  Google Scholar 

  49. Ahmad, S.; Pardini, R.S. Antioxidant defense of the cabbage looper, Trichoplusia ni-enzymatic responses to the superoxide-generating flavonoid, quercetin, and photodynamic furanocoumarin, xanthotoxin. Photochem. Photobiol. 51:305 (1990).

    Article  CAS  Google Scholar 

  50. Aucoin, R.R.; Philogene, B.J.R.; Arnason, J.T. Antioxidant enzymes as biochemical defenses against phototoxin-induced oxidative stress in three species of herbivorous Lepidoptera. Arch. Insect Biochem. Physiol. 16:139 (1991).

    Article  CAS  Google Scholar 

  51. Lee, K.; Berenbaum, M.R. Action of antioxidant enzymes and cytochrome P-450 monooxy-genases in the cabbage looper in response to plant phototoxins. Arch. Insect Biochem. Physiol. 10:151 (1989).

    Article  Google Scholar 

  52. Lee, K.; Berenbaum, M.R. Defense of parsnip webworm against phototoxic furanocourmarins: role of antioxidant enzymes. J. Chem. Ecol. 16:2451 (1990).

    Article  CAS  Google Scholar 

  53. Pristos, CA.; Ahmad, S.; Bowen, S.M.; Blomquist, G.J.; Pardini, R.S. Antioxidant enzyme activities in the southern armyworm, Spodoptera eridania. Comp.Biochem.Physiol. 900:423 (1988).

    Google Scholar 

  54. Pristos, CA.; Pastore, J.; Pardini, R.S. Role of Superoxide dismutase in the protection and tolerance to the prooxidant allelochemical quercetin in Papilio polyxenes, Spodoptera eridania, and Trichoplusia ni. Arch. Biochem. Physiol. 16:273 (1991).

    Article  Google Scholar 

  55. Felton, G.W.; Duffey, S.S. Ascorbate oxidation-reduction in Helicoverpa zea as a scavenging system against dietary oxidants. Arch. Insect Biochem. Pkysiol. 19:27–37 (1992).

    Article  CAS  Google Scholar 

  56. Steinly, B.A.; Berenbaum, M. Histopathological effects of tannins on the midgut epithelium of Papilio polyxenes and Papilio glaucus. Ent. Exp. Appl. 39:3 (1985).

    Article  Google Scholar 

  57. Barbosa, P.; Krischik, V.A. Influence of alkaloids on feeding preference for Eastern deciduous forest trees by the gypsy moth, Lymantria dispar. Am Nat. 130:87 (1988).

    Google Scholar 

  58. Bate-Smith, E.C. Astringent tannins of Acer species. Phytochemistry 16:1421 (1977).

    Article  CAS  Google Scholar 

  59. Schultz, J.C.; Baldwin, I.T. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science 217:149 (1982).

    Article  PubMed  CAS  Google Scholar 

  60. Bate-Smith, E.C. Phytochemistry of proanthocyanidins. Phyto chemistry. 14:1107 (1975).

    CAS  Google Scholar 

  61. Rossiter, M.C.; Schultz, J.C.; Baldwin, I.T. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology 69:267 (1988).

    Article  CAS  Google Scholar 

  62. Kleiner, K.; Montgomery, M.E. Opposing relationships between gypsy moth performance and tannins of two oak species, [in press].

    Google Scholar 

  63. Keating, S.T.; Yendol, W.G.; Schultz, J.C. Relationship between susceptibility of gypsy moth larvae (Lepidoptera:Lymantriidae) to a baculovirus and host plant foliage constituents. Environ. Entomol. 17:952 (1988).

    Google Scholar 

  64. Keating, S.T.; McCarthy, W.J.; Yendol, W.G. Gypsy moth (Lymantria dispar) larval susceptibility to a baculovirus affected by selected nutrients, hydrogen ions (pH), and plant allelochemicals in artificial diets. J. Inver. Path. 54:165 (1989).

    Article  CAS  Google Scholar 

  65. Schultz, J.C.; Foster, M.A.; Montgomery, M.E. Host plant-mediated impacts of a baculovirus on gypsy moth populations. In: Watt, A.D.; Leather S.R; Hunter, M.D.; Kidd, N.A.C. (eds.) Population dynamics of forest insects. Intercept, U.K. p. 303 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Appel, H.M., Schultz, J.C. (1992). Activity of Phenolics in Insects: The Role of Oxidation. In: Hemingway, R.W., Laks, P.E. (eds) Plant Polyphenols. Basic Life Sciences, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3476-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3476-1_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6540-2

  • Online ISBN: 978-1-4615-3476-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics