Skip to main content

Aspects of the Biogeochemistry of Methane in Mono Lake and the Mono Basin of California

  • Chapter
Biogeochemistry of Global Change

Abstract

Above-ambient levels of methane and higher hydrocarbons were detected in the atmosphere of the Mono Basin. These gases emanated from several different sources, including natural gas seeps (thermogenic and biogenic), and methanogenic activity in sediments. Seeps were distributed over nearly 33% of the lake bottom and were also present in the exposed former lakebed. They originated from one or more natural gas deposits that underlie the basin. Seeps associated with hot springs had a thermogenic character, whereas the others had the characteristics of bacterially formed gases. The radiocarbon content of methane in all seep gases was low (5-11% modern carbon), indicating an age of greater than about 20,000 years.

Dissolved methane increased with depth in the sediments, ultimately reaching saturation levels (1-3 mM). The outward diffusive flux of methane into the anoxic bottom waters elevated concentrations to 60 µM during the 1984-1988 meromictic interval. The radiocarbon content of hypolimnion methane was equivalent to that of the dissolved inorganic carbon (~80% modern carbon), indicating derivation from current methanogenic activity. Oxidation by anaerobic bacteria was the major sink for this methane. Methane that escaped oxidation transited to the epilimnion where it attained supersaturation (0.1-3.0 µM) relative to the atmosphere. Measured outward fluxes over a 2-year period were highly variable, ranging from 0.01 to 4.82 mmoles CH4 m-2 d-1.

Bacterial activity was detected in the sediments of the hypolimnion High rates of sulfate reduction (~200 µmoles L-1 d-1) were measured in the upper 5-cm interval but decreased > 10-fold with depth. The highest rate of methanogenic activity was ~1 µmole L-1 d-1, as measured by reduction of 14CO2. Bacteria metabolized dimethylsulfide, trimethylamine, acetate, and glucose to primarily CO2 and some CH4. Turnovers of glucose (k = 0.16 d-1) and trimethylamine (k = 0.09 d-1) were highest in the upper 2.5-cm interval and decreased as much as 10-fold with depth. These results confirm that a low rate of methanogenic activity occurs in this extreme environment and is the source of methane to the hypolimnion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikin, A.C., J.R. Herman, E.J. Maier, and G.J. McQuillan. 1982. Atmospheric chemistry of ethane and ethylene, J. Geophys. Res. 87:3105–3118.

    Article  CAS  Google Scholar 

  2. Alperin, M.J., W.S. Reeburgh, and M.J. Whiticar. 1988. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation, Global Biogeochem. Cycles 2:279–288.

    Article  CAS  Google Scholar 

  3. Alperin, M.J., and W.S. Reeburgh. 1985. Inhibition experiments on anaerobic methane oxidation, Appl. Environ. Microbiol. 50:940–945.

    CAS  Google Scholar 

  4. Anderson, L.C.D., and K.W. Bruland 1991. Biogeochemistry of arsenic in natural waters: The importance of methylated species. Environ. Sci. Technol. 25:420–427.

    Article  CAS  Google Scholar 

  5. Anderson, R.F., M.P. Bacon, and P.G. Brewer. 1982. Elevated concentrations of actinides in Mono Lake. Science 216:514–516.

    Article  CAS  Google Scholar 

  6. Bailey, R.A., G.B. Dalyrymple, and M.A. Lanphere. 1976. Volcanism, structure, and geochronology of Long Valley caldera, Mono County, California. J. Geophys. Res. 81:725–744.

    Article  CAS  Google Scholar 

  7. Baker-Blocker, A., T.M. Donahue, and K.H. Mancy. 1977. Methane flux from wetland areas, Tellus 29:245–250.

    Article  CAS  Google Scholar 

  8. Barber, T.R., R.A. Burke, Jr., and W.M. Sackett. 1988. Diffusive flux of methane from warm wetlands. Global Biogeochem. Cycles 2:411–426.

    Article  CAS  Google Scholar 

  9. Barnes, I., R.W. Kistler, R.H. Mariner, and T.S. Presser. 1981. Geochemical evidence of the basement rocks of the Sierra Nevada, California. USGS Water Supply Paper 2181, U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  10. Bartlett, K.B., P.M. Crill, D.I. Sebacher, R.C. Harriss, J.O. Wilson, and J.M. Melack. 1988. Methane flux from the central Amazonian floodplain. J. Geophys. Res. 91:1571–1582.

    Article  Google Scholar 

  11. Blake, D.R., and F.S. Rowland. 1988. Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science 239:1129–1131.

    Article  CAS  Google Scholar 

  12. Blake, D.R., and F.S. Rowland. 1986. Global atmospheric concentrations and source strength of ethane. Nature (London) 321:231–233.

    Article  CAS  Google Scholar 

  13. Blair, N.E., C.S. Martens, and D.J. Des Marais. 1987. Natural abundances of carbon isotopes in acetate from a coastal marine sediment. Science 236:66–68.

    Article  CAS  Google Scholar 

  14. Bonsang, B., M. Kanakidou, and G. Lambert. 1987. Non-methane hydrocarbons chemistry in the atmosphere of an equatorial forest: A case of indirect photochemical production of OH radicals. Geophys. Res. Lett. 14:1250–1253.

    Article  CAS  Google Scholar 

  15. Broecker, W.S., R. Wanninkhof, G. Mathieu, T.H. Peng, S. Stine, S. Robinson, A. Herczeg, and M. Stuiver. 1991. The radiocarbon budget for Mono Lake: an unsolved mystery. Earth Planet. Sci. Lett. 88:16–26.

    Article  Google Scholar 

  16. Christensen, M.N., C.M. Gilbert, K.R. Lajoie, and Y. Al Rawi. 1969. Geological-geophysical interpretation of Mono Basin, California-Nevada. J. Geophys. Res. 74:5221–5239.

    Article  Google Scholar 

  17. Cicerone, R.J., and R.S. Oremland 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 2:299–327.

    Article  CAS  Google Scholar 

  18. Cicerone, R.J., J.D. Shetter, and C.C. Delwiche. 1983. Seasonal variation of methane flux from a California rice paddy. J. Geophys. Res. 88:11022–11024.

    Article  CAS  Google Scholar 

  19. Cloern, J.E., B.E. Cole, and R.S. Oremland. 1983. Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, U.S.A.). Hydrobiologia 105:195–206.

    Article  CAS  Google Scholar 

  20. Cloern, J.E., B.E. Cole, and R.S. Oremland. 1983. Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnol. Oceanogr. 28:1049–1061.

    Article  CAS  Google Scholar 

  21. Crill, P.M., K.B. Bartlett, R.C. Harriss, E. Gorham, E.S. Verry, D.I. Sebacher, L. Madzar, and W. Sanner. 1988. Methane flux from Minnesota peatlands. Global Biogeochem. Cycles 2:371–384.

    Article  CAS  Google Scholar 

  22. Crill, P.M., K.B. Bartlett, J.O. Wilson, D.I. Sebacher, R.C. Harriss, J.M. Melack, S. Maclntyre, L. Lesack, and L. Smith-Morrill. 1988. Tropospheric methane from an Amazonian floodplain lake. J. Geophys. Res. 93:1564–1570.

    Article  CAS  Google Scholar 

  23. Crutzen, P.J., I. Aselman, and W. Seiler. 1986. Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus. 38B:271–284.

    Article  CAS  Google Scholar 

  24. Culbertson, C.W., A.J.B. Zehnder, and R.S. Oremland. 1981. Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures. Appl. Environ. Microbiol. 41:396–403.

    CAS  Google Scholar 

  25. Gilbert, C.M., N.M. Christensen, Y. Al-Rawi, and K.R. Lajoie. 1968. Structural and volcanic history of the Mono Basin, California. In R.R. Coats, R.L. Hay, and Anderson (eds.), Studies in Volcanology, Geol. Soc. Amer. Mem. 116, Geological Society of America, Washington DC.

    Google Scholar 

  26. Greenberg, J.P., and P.R. Zimmerman. 1984. Non-methane hydrocarbons in remote tropical, continental, and marine atmospheres. J. Geophys. Res. 89:4767–4778.

    Article  CAS  Google Scholar 

  27. Greenberg, J.P., P.R. Zimmerman, L. Heidt, and W. Pollock. 1984. Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil. J. Geophys. Res. 89:1350–1354.

    Article  CAS  Google Scholar 

  28. Hill, D.P., R.A. Bailey, and A.S. Ryall. 1985. Active tectonic and magmatic processes beneath Long Valley caldera, eastern California: An overview. J. Geophys. Res. 90:11111–11120.

    Article  Google Scholar 

  29. Howes, B.L., J.W. Dacey, and G.M. King. 1984. Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments. Limnol. Oceanogr. 29:1037–1051.

    Article  CAS  Google Scholar 

  30. Iversen, N.I., R.S. Oremland, and M. Klug. 1987. Big Soda Lake (Nevada). 2. Pelagic methanogenesis and anaerobic methane oxidation. Limnol. Oceanogr. 32: 804–814.

    Article  CAS  Google Scholar 

  31. Iversen, N.I., and T.H. Blackburn. 1981. Seasonal rates of methane oxidation in anoxic marine sediments. Appl Environ. Microbiol. 41:1295–1300.

    CAS  Google Scholar 

  32. Jellison, R., and J.M. Melack. 1988. Photosynthetic activity of phytoplankton and its relation to environmental factors in hypersaline Mono Lake, California. Hydrobiologia 158:69–88.

    Article  CAS  Google Scholar 

  33. Kiene, R.P., R.S. Oremland, A. Catena, L.G. Miller, and D.G. Capone. 1986. Metabolism of reduced methylated sulfur compounds by anaerobic sediments and a pure culture of an estuarine methanogen. Appl. Environ. Microbiol. 52:1037–1045.

    CAS  Google Scholar 

  34. King, G.M., B.L. Howes, and J.W.H. Dacey. 1985. Sulfate reduction in Georgia salt marsh soils: An evaluation of pyrite formation using 35S and 55Fe tracers. Limnol Oceanogr. 28:987–995.

    Article  Google Scholar 

  35. King, G.M. 1984. Utilization of hydrogen, acetate, and “non-competitive” substrates by methanogenic bacteria in marine sediments. Geomicrobiol. J. 3:275–306.

    Article  CAS  Google Scholar 

  36. King, G.M., M.J. Klug, and D.R. Lovley. 1981. Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine. Appl. Environ. Microbiol. 45:1848–1853.

    Google Scholar 

  37. Lajoie, K.R. 1968. Quaternary stratigraphy and geologic history of Mono Basin, eastern California, PhD dissertation, University of California, Berkeley.

    Google Scholar 

  38. Lenz, P.H., S.D. Cooper, J.M. Melack, and D.M. Winkler. 1986. Spatial and temporal distribution patterns of three trophic levels in a saline lake. J. Plankton Res. 8:1051–1064.

    Article  Google Scholar 

  39. Levine, J.S., W.R. Cofer III, D.I. Sebacher, R.P. Rhinehart, E.L. Winstead, S. Sebacher, C.R. Hinkle, P.A. Schmalzer, and A. Koller, Jr. 1990. The effect of fire on biogenic emissions of methane and nitric oxide from wetlands. J. Geophys. Res. 95:1853–1864.

    Article  Google Scholar 

  40. Lovley, D.R., and S. Goodwin. 1988. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52:2993–3003.

    CAS  Google Scholar 

  41. Lowe, D.C., C.A.M. Brenninkmeijer, M.R. Manning, R. Sparks, and G. Wallace. 1988. Radiocarbon determination of atmospheric methane at Baring Head, New Zealand. Nature (London) 332:522–525.

    Article  CAS  Google Scholar 

  42. Manning, M.R., D.C. Lowe, W.H. Melhuish, R.J. Sparks, G. Wallace, C.A.M. Brenninkmeijer, and R.C. McGill. 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32:37–58.

    Google Scholar 

  43. Martens, C.S., N.E. BLair, C.D. Green, and D.J. Des Marais. 1986. Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment. Science 233:1300–1303.

    Article  CAS  Google Scholar 

  44. Martens, C.S., and J.V. Klump. 1984. Biogeochemical cycling in an organic-rich coastal marine basin. 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim. Cosmochim. Acta 48:1987–2004.

    Article  CAS  Google Scholar 

  45. Martens, C.S., G.W. Kipphut, and J.V. Klump. 1980. Sediment-water chemical exchange in the coastal zone traced by in situ Radon-222 flux measurements. Science 208:285–288.

    Article  CAS  Google Scholar 

  46. Mason, D.T. 1967 Limnology of Mono Lake, California, PhD. dissertation, University California, Berkeley.

    Google Scholar 

  47. Miller, L.G., and R.S. Oremland. 1988. Methane efflux from the pelagic regions of four lakes. Global Biogeochem. Cycles. 2:269–277.

    Article  Google Scholar 

  48. Miller, L.G., R. Jellison, R.S. Oremland, and C.W. Culbertson. 1993. Meromixis in hypersaline Mono Lake, California III: Biogeochemical response to stratification and overturn. Limnol. Oceanog. (in press).

    Google Scholar 

  49. Oremland, R.S., and C.W. Culberson. 1992. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature (London) 356:421–423.

    Article  CAS  Google Scholar 

  50. Oremland, R.S., and C.W. Culberson. 1992. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation. Appl. Environ. Microbiol. 58:2983–2992.

    CAS  Google Scholar 

  51. Oremland, R.S. 1990. Nitrogen fixation dynamics of two diazotrophic communities in Mono Lake, California. Appl. Environ. Microbiol. 56:614–622.

    CAS  Google Scholar 

  52. Oremland, R.S., and G.M. King. 1989. Methanogenesis in hypersaline environments. In Y. Cohen and E. Rosenberg (eds.), Microbial Mats: Physiological Ecology of Benthic Microbial Communities. American Society of Microbiology, Washington DC.

    Google Scholar 

  53. Oremland, R.S., and D.G. Capone. 1988. Use of “specific” inhibitors in biogeochemistry and microbial ecology. Adv. Microbial Ecology. 10:285–383.

    Article  CAS  Google Scholar 

  54. Oremland, R.S., and D.J. Des Marais. 1983. Distribution, abundance, and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake. Geochim. Cosmochim. Acta 47:2107–2114.

    Article  CAS  Google Scholar 

  55. Oremland, R.S., and S. Polcin. 1982. Methanogenesis and sulfate-reduction: Competitive and non-competitive substrates in estuarine sediments. Appl. Environ. Microbiol. 44:1270–1276.

    CAS  Google Scholar 

  56. Oremland, R.S., M.J. Whiticar, F.E. Strohmaier, and R.P. Kiene. 1988. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments. Geochim. Cosmochim. Acta 52:1895–1904.

    Article  CAS  Google Scholar 

  57. Oremland, R.S., L.G. Miller, and M.J. Whiticar. 1987. Sources and flux of natural gases from Mono Lake, California. Geochim. Cosmochim. Acta 51:2915–2929.

    Article  CAS  Google Scholar 

  58. Pelagos. 1987. A bathymetric survey of Mono Lake, California, for the Los Angeles Department of Water and Power, Pelagos Corporation, San Diego.

    Google Scholar 

  59. Peng, T-H., and W. Broecker. 1980. Gas exchange rates for three closed-basin lakes. Limnol. Oceanogr. 25:789–796.

    Article  CAS  Google Scholar 

  60. Reed, W.E. 1977. Biogeochemistry of Mono Lake, California. Geochim. Cosmochim. Acta 41:1231–1245.

    Article  CAS  Google Scholar 

  61. Russell, I.C. 1889. Quaternary history of Mono Valley, California. U.S. Geological Survey 8th Annual Report, pp. 261–394.

    Google Scholar 

  62. Sansone, F.J., and C.S. Martens. 1981. Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science 211:707–709.

    Article  CAS  Google Scholar 

  63. Schoell, M. 1983. Genetic characterization of natural gases. Amer. Assoc. Petrol. Geol. Bull. 67:2225–2238.

    CAS  Google Scholar 

  64. Scholl, D.W., R. Von Huene, P. St. Amand, and J.B. Ridlon. 1967. Age and origin of topography beneath Mono Lake, a remnant Pleistocene lake, California. Bull. Geol. Soc. Amer. 78:583–600.

    Article  Google Scholar 

  65. Schutz, H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg, and W. Seiler. 1989. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. 94:16405–16416.

    Article  Google Scholar 

  66. Seiler, W., R. Conrad, and D. Scharfee. 1984. Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils. J. Atmos. Chem. 1:171–186.

    Article  CAS  Google Scholar 

  67. Seiler, W., A. Holzapfel-Pschorn, R. Conrad, and D. Scharffe. 1984. Methane emission from rice paddies. J. Atmos. Chem. 1:241–268.

    Article  CAS  Google Scholar 

  68. Sieh, K., and M. Bursik. 1986. Most recent eruption of the Mono Craters, eastern central California. Geophys. Res. 91:12539–12571.

    Google Scholar 

  69. Simpson, H.J., R.M. Trier, J.R. Toggweiler, G. Mathieu, B.L. Deck, C.R. Olsen, D.E. Hammond, C. Fuller, and T.L. Ku. 1982. Radionuclides in Mono Lake, California. Science 216:512–514.

    Article  CAS  Google Scholar 

  70. Simpson, H.J., R.M. Trier, C.R. Olsen, D.E. Hammond, A. Ege, L. Miller, and J.M. Melack. 1980. Fallout plutonium in an alkaline, saline lake. Science 207: 1071–1073.

    Article  CAS  Google Scholar 

  71. Smith, R.L., and R.S. Oremland. 1987. Big Soda Lake (Nevada). 3. Pelagic sulfate reduction. Limnol. Oceanogr. 32:794–803.

    Article  CAS  Google Scholar 

  72. Sorey, M.L. 1985. Eruption and present state of the hydrothermal system in Long Valley caldera. J. Geophys. Res. 90:11219–11228.

    Article  CAS  Google Scholar 

  73. Stine, S. 1990. Late Holocene fluctuations of Mono Lake, eastern California. Paleogeogr. Paleoclimatol. Paleoecol. 78:333–381.

    Article  Google Scholar 

  74. Tyler, S.C., P.R. Zimmerman, C. Cumberbatch, J.P. Greenberg, G. Westberg, and J.P.E.C. Darlington. 1988. Measurements and interpretation of 13C data from termites, rice paddies, and wetlands in Kenya. Global Biogeochem. Cycles 2:341–356.

    Article  CAS  Google Scholar 

  75. Wahlen, M., N. Tanaka, R. Henry, B. Deck, J. Zeglin, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, and W. Broecker. 1989. Carbon-14 in methane sources and in atmospheric methane: The contribution of fossil carbon. Science 245:286–290.

    Article  CAS  Google Scholar 

  76. Wanninkof, R., J.R. Ledwell, and W.S. Broecker. 1987. Gas exchange on Mono Lake and Crowly lake, California. J. Geophys. Res. 92:14567–14580.

    Article  Google Scholar 

  77. Whalen, S.C., and W.S. Reeburgh. 1988. A methane flux time series for tundra environments. Global Biogeochem. Cycles 2:399–409.

    Article  CAS  Google Scholar 

  78. Whelan, J.K., R.S. Oremland, M. Tarafa, R.L. Smith, R. Howarth, and C. Lee. 1986. Evidence for sulfate reducing and methane producing microorganisms from sites 618, 619, and 622. In A. Buoma et al. (eds.), Initial Reports of the Deep Sea Drilling Project Vol 96, U.S. Government Printing Office, Washington DC, pp. 767–775.

    Google Scholar 

  79. Whiticar, M.J., E. Faber, and M. Schoell. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim. Cosmochim Acta 49:2069–2080.

    Google Scholar 

  80. Zimmerman, P.R., J.P. Greenberg, and C.E. Westberg. 1988. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon Boundary layer. J. Geophys. Res. 93:1407–1416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oremland, R.S. et al. (1993). Aspects of the Biogeochemistry of Methane in Mono Lake and the Mono Basin of California. In: Oremland, R.S. (eds) Biogeochemistry of Global Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2812-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2812-8_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6215-9

  • Online ISBN: 978-1-4615-2812-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics