Skip to main content

Effect of Sugars on Photoreceptor Outer Segment Assembly

  • Chapter
Degenerative Diseases of the Retina

Abstract

During embryonic development, the rudimentary layers that will become the pigment epithelium (PE) and the neural retina are brought into close proximity upon the collapse of the optic vesicles. At this developmental stage, the retina is morphologically undifferentiated and photoreceptor outer segments have not yet begun to form. The close apposition of the PE and photoreceptors prior to the time when outer segments first appear raises the possibility that the PE could be a source of signals that induce or regulate photoreceptor development and outer segment elaboration. Also, the observation that outer segment development is limited in the absence of the PE in most species suggests that interactions between these two cell types may be of fundamental importance for the structural and functional maturation of photoreceptors [1, 2, 3, 5, 13, 16, 19, 20, 26].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adler R (1986) Developmental predetermination of the structural and molecular polarization of photoreceptor cells. Dev. Biol., 117: 520–527.

    Article  CAS  PubMed  Google Scholar 

  2. Adler R (1987) Nature and nurture in the differentiation of retinal photoreceptors and neurons. Cell Differ., 20: 183–188.

    Article  CAS  PubMed  Google Scholar 

  3. Adler R, Politi L (1989) Expression of a “ survival crisis” by normal and rd/rd mouse photoreceptor cells in vitro. In: LaVail MM, Anderson RE, Hollyfield JG (eds) Inherited and environmentally induced retinal degenerations, Alan R. Liss, Inc., New York, pp 169–181.

    Google Scholar 

  4. Anderson DH, Gué rin CJ, Erickson PA, Stern WH, Fisher SK (1986) Morphological recovery in the reattached retina. Invest. Ophthalmol. Vis. Sci., 27: 168–183.

    CAS  PubMed  Google Scholar 

  5. Caffé AR, Visser H, Jansen HG, Sanyal S (1989) Histopathic differentiation of neonatal mouse retina in organ culture. Curr. Eye Res., 8: 1083–1092.

    Article  PubMed  Google Scholar 

  6. Defoe DM, Besharse JC, Fliesler SJ (1986) Tunicamycin-induced dysgenesis of retinal rod outer segment membranes. I. Quantitative freeze-fracture analysis. Invest. Ophthalmol. Vis. Sci., 27: 1595–1601.

    CAS  PubMed  Google Scholar 

  7. Erickson PA, Fisher SK, Anderson DH, Stern WH, Borgula GA (1983) Retinal detachment in the cat: the outer nuclear and outer plexiform layers. Invest. Ophthalmol. Vis. Sci., 24: 927–942.

    CAS  PubMed  Google Scholar 

  8. Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT, LaVail MM (1990) Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature, 347: 83–86.

    Article  CAS  PubMed  Google Scholar 

  9. Fliesler SJ, Rayborn ME, Hollyfield JG (1985) Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin. J. Cell Biol., 100: 574–587.

    Article  CAS  PubMed  Google Scholar 

  10. Fliesler SJ, Rayborn ME, Hollyfield JG (1986) Inhibition of oligosaccharide processing and membrane morphogenesis in retinal rod photoreceptor cells. Proc. Natl. Acad. Sci., 83: 6435–6439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gué rin CJ, Anderson DH, Fariss RN, Fisher SK (1989) Retinal reattachment of the primate macula. Invest. Ophthalmol. Vis. Sci., 30: 1708–1725.

    Google Scholar 

  12. Guérin CJ, Lewis GP, Fisher SK, Anderson DH (1993) Recovery of photoreceptor outer segment length and analysis of membrane assembly rates in regenerating primate photoreceptor outer segments. Invest. Ophthalmol. Vis. Sci., 34: 175–183.

    PubMed  Google Scholar 

  13. Lahav M (1987) In vitro model of retinal photoreceptor differentiation. Trans. Am. Ophthalmol. Soc, 85: 600–638.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Lahiri D, Hollyfield JG (1992) Development of WGA-binding domains in the IPM of Xenopus laevis embryos. Invest. Ophthalmol. Vis. Sci. (Suppl.), 33: 815.

    Google Scholar 

  15. Lahiri D, Rayborn ME, Hollyfield JG (1991) Development of the IPM in Xenopus laevis embryos. Invest. Ophthalmol. Vis. Sci. (Suppl.)32: 1217.

    Google Scholar 

  16. LaVail MM, Hild W (1971) Histotypic organization of the rat retina in vitro. Z. Zellforsch, 114: 557–579.

    Article  CAS  Google Scholar 

  17. Lewis GP, Erickson PA, Anderson DH, Fisher SK (1991) Opsin distribution and protein incorporation in photoreceptors after experimental retinal detachment. Exp. Eye Res., 53: 629–640.

    Article  CAS  PubMed  Google Scholar 

  18. Li L, Turner JE (1991) Optimal conditions for long-term photoreceptor cell rescue in RCS rats: The necessity for healthy RPE transplants. Exp. Eye Res., 52: 669–679.

    Article  CAS  PubMed  Google Scholar 

  19. Politi LE, Lahav M, Adler R (1988) Development of neonatal mouse retinal neurons and photoreceptors in low density cell culture. Invest. Ophthalmol. Vis. Sci., 29: 534–543.

    CAS  PubMed  Google Scholar 

  20. Roof D, Hayes A, Adamian M, Marescalchi P, Heth C (1991) Photoreceptor development in rat neural retina-retinal pigment epithelium co-cultures. Invest. Ophthalmol. Vis. Sci., 32: 1148.

    Google Scholar 

  21. Stiemke MM, Hollyfield JG (1994) Outer segment disc membrane assembly in the absence of the pigment epithelium: The effect of exogenous sugars. Dev. Brain Res., 80: 285–289.

    Article  CAS  Google Scholar 

  22. Stiemke MM, Landers RA, Al-Ubaidi MR, Hollyfield JG (1994) Photoreceptor outer segment development in Xenopus laevis: Influence of the pigment epithelium. Dev. Biol., 162: 169–180.

    Article  CAS  PubMed  Google Scholar 

  23. Takeda Y, Yamaguchi K, Yamada K, Matthes MT (1993) Photoreceptor rescue of Royal College of Surgeons (RCS) rat retina by human subretinal fluid. Invest. Ophthalmol. Vis. Sci., 34: 1097.

    Google Scholar 

  24. Travis GH, Sutcliffe JG, Bok D (1991) The retinal degeneration slow (rds) gene product is a photoreceptor disc membrane-associated glycoprotein. Neuron, 6: 61–70.

    Article  CAS  PubMed  Google Scholar 

  25. Ulshafer RJ, Allen CB, Fliesler SJ (1986) Tunicamycin-induced dysgenesis of retinal rod outer segment membranes. II. A scanning electron microscopy study. Invest. Ophthalmol. Vis. Sci., 27: 1587–1594.

    CAS  PubMed  Google Scholar 

  26. Watanabe T, Raff MC (1990) Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron, 2: 461–467.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stiemke, M.M., Hollyfield, J.G. (1995). Effect of Sugars on Photoreceptor Outer Segment Assembly. In: Anderson, R.E., LaVail, M.M., Hollyfield, J.G. (eds) Degenerative Diseases of the Retina. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1897-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1897-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5774-2

  • Online ISBN: 978-1-4615-1897-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics