Skip to main content

Halophilic Acetogenic Bacteria

  • Chapter
Acetogenesis

Abstract

As outlined in preceding chapters of this book, acetogenic bacteria have a specialized physiological potential for the conservation of energy via the reduction of CO2 to acetate. They also harbor diverse catabolic processes and are found in unusual habitats. Although their role in nature was initially viewed somewhat restrictively, it is now evident that they might have a large impact on carbon and energy flow in some environments, in particular that of certain gastrointestinal ecosystems (Breznak et al., 1988; Kane and Breznak, 1991a, 1991b). However, specialized (or extreme) terrestrial environments are largely unexplored relative to the involvement of acetogenesis and associated organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beaty, P. S., and L. G. Ljungdahl. 1991. Growth of Clostridium thermoaceticum on methanol, ethanol, propanol, and butanol in medium containing either thiosulfate or dimethylsulfoxide, Abstr. K-131, p. 236. Ann. Meet. Am. Soc. Microbiol. 1991.

    Google Scholar 

  • Bonch-Osmolovskaya, E. A., I. Ya. Vedenina, and G. A. Zavarzin. 1988. Hypersaline lagoons of the Sivash Lake and anaerobic destruction of organic matter in halophilic cyanobacterial mats. Mikrobiologiya 57:442–449 (in Russian).

    CAS  Google Scholar 

  • Breznak, J. A., J. M. Switzer, and H. J. Seitz. 1988. Sporomusa termitida sp.nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.

    Article  CAS  Google Scholar 

  • Buschhorn, H., P. Dürre, and G. Gottschalk. 1989. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl. Environ. Microbiol. 55:1835–1840.

    PubMed  CAS  Google Scholar 

  • Bykhovsky, V. Y. A., M. A. Pusheva, N. I. Zaitseva, T. N. Zhilina, D. B. Pankovskii, and E. N. Detkova. 1994. Biosynthesis of corrinoids and its possible precursers in extremely halophilic homoacetogenic bacterium Acetohalobium arabaticum gen nov., sp. nov. Pritladnaya Mikrobiologiya Biochimiya 30:93–103. (in Russian).

    Google Scholar 

  • Elazari-Volcani, E. B. 1940. Studies on the microflora of the Dead Sea, Ph.D thesis. Hebrew University of Jerusalem.

    Google Scholar 

  • Elazari-Volcani, B. 1944. The microorganisms of the Dead Sea. In: Papers Collected to Commemorate the 70th Anniversary of Dr. Chaim Weizman, pp. 71–85. Daniel Sieff Research Institute, Rehovoth, Israel.

    Google Scholar 

  • Gaumette, P., Y. Cohen, and R. Matheron. 1991. Isolation and characterization of Desulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Syst. Appl. Microbiol. 14:33–38.

    Article  Google Scholar 

  • Gerasimenko, L. M., V. K. Nekrasova, V. K. Orleansky, S. L. Venetskaya, and G. A. Zavarzin. 1989. The primary production of halophilic cyanobacterium coenoses. Mikrobiologiya 58:507–524 (in Russian).

    Google Scholar 

  • Gerasimenko, L. M., S. L. Venetskaya, A. V. Dubinin, V. K. Orleansky, and G. A. Zavarzin. 1992. Algo-bacterial communities of hypersaline lagoons of the Sivash (the Crimea) Algologia (Kiev) 1:88–94 (in Russian).

    Google Scholar 

  • Gorlenko, V. M., E. I. Kompantseva, S. A. Korotkov, V. V. Pouchkova, and A. S. Savvichev. 1984. Conditions of development and species of phototrophic bacteria, inhabiting saline shallow reservoirs in Crimea. Izv. Akad. Nauk SSSR Ser. Biol. 3:362–374 (in Russian).

    Google Scholar 

  • Hirsch, P. 1980. Distribution and pure culture studies of morphologically distinct Solar Lake microorganisms. In: Hyper saline Brines and Evaporitic Environments, A. Nissenbaum (ed.), pp. 41–46. Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes. In: Methods in Microbiology, J. R. Noms and D. W. Ribbons (eds.), Vol. 3B, pp. 117–132. Academic Press, New York.

    Google Scholar 

  • Issatchenko, B. L. 1927. Microbiological investigations on mud lakes. Trudy geol Comiteta new ser., n. 148, p. 154; reprinted in: Issatchko, B. L. 1951. Selected works, vol. 2, A. A. Imshenezky (ed.), USSR Academy of Sciences Press, Moscow-Leningrad (in Russian).

    Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991a. Acetonema longum gen. nov., sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermus occidentis. Arch. Microbiol. 156:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991b. Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch. Microbiol. 156:99–104.

    Article  CAS  Google Scholar 

  • Kevbrin, V. V., A. V. Dubinin, and G. A. Osipov. 1991. Osmoregulation in the marine cyanobacterium Microcoleus chtonoplastes. Mikrobiologiya 60:596–599 (in Russian).

    CAS  Google Scholar 

  • Kevbrin, V. V., and G. A. Zavarzin. 1992. Influence of sulfur compounds on the growth of the halophilic homoacetogenic bacterium. Acetohalobium arabaticum. Mikrobiologiya 61:76–81 (in Russian).

    Google Scholar 

  • King, G. M. 1984. Utilization of hydrogen, acetate and “non-competitive” substrates methanogenic bacteria in marine sediments. J. Geomicrobiol. 3:275–306.

    Article  CAS  Google Scholar 

  • King, G. M. 1988. Methanogenesis from methylated amines in a hypersaline algal mat. Appl. Environ. Microbiol. 54:130–136.

    PubMed  CAS  Google Scholar 

  • Koesnander, A. S., N. Nishio, and S. H. Nagai. 1991. Effects of the trace metal ions on the growth, homoacetogenesis and corrinoid production by Clostridium thermoaceticum. J. Ferment Bioengineer. 71:181–185.

    Article  Google Scholar 

  • Lanyi, J. K. 1974. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Reviews 38:272–290.

    CAS  Google Scholar 

  • Larsen, H. 1967. Biochemical aspects of extreme halophilism. Adv. Microbiol. Physiol. 1:97–132.

    Article  CAS  Google Scholar 

  • Larsen, H. 1980. Ecology of hypersaline environments. In: Hypersaline Brines and Evaporitic Environments, A. Nissenbaum (ed.), pp. 23–29. Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Larsen, H. 1982. The Familiy Halobacteriaceae. In: The Prokaryotes, M. P. Starr, H. Stolp, and H. G. Schlegel (eds.), Vol. 2., pp. 985–994. Springer-Verlag, New York.

    Google Scholar 

  • Möller, B., R. Ossmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984. Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides sp. nov., and Sporomusa ovata sp. nov. Arch. Microbiol. 189:388–396.

    Article  Google Scholar 

  • Oren, A. 1983. Clostridium lortetii sp. nov., a halophilic obligately anaerobic bacterium producing endospore with attached gas vacuoles. Arch. Microbiol. 136: 42–48.

    Article  Google Scholar 

  • Oren, A. 1986. Intracellular salt concentration of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can. J. Microbiol. 32:4–9.

    Article  CAS  Google Scholar 

  • Oren, A. 1992. The genera Haloanaerobium, Halobacteroides, and Sporohalobacter. In: The Prokaryotes, A. Ballows, H. G. Truper, M. Dworkin, W. Harder, K.-H. Schleifer (eds.), 2nd ed., pp. 1893–1913. Springer-Verlag, New York.

    Google Scholar 

  • Oren, A., W. G. Weisburg, M. Kessel, and C. R. Woese. 1984a. Halobacteroides halobius gen. nov., sp. nov, a moderately halophilic, anaerobic bacterium from the bottom sediments of the Dead Sea. System. Appl. Microbiol. 5:58–70.

    Article  CAS  Google Scholar 

  • Oren, A., B. J. Paster, and C. R. Woese. 1984b. Haloanaerobiaceae: a new family of moderately halophilic, obligately anaerobic bacteria. System. Appl. Microbiol. 5:71–80.

    Article  CAS  Google Scholar 

  • Oren, A., H. Pohla, and E. Stackebrandt. 1987. Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov., as Sporohalobacter lortetii comb, nov., and description of Sporohalobacter marismortui sp. nov. System. Appl. Microbiol. 9:239–246.

    Article  CAS  Google Scholar 

  • Oremland, R. S., L. Marsh, and D. J. Des Marais. 1982. Methanogenesis in Big Soda Lake, Nevada: an alkaline moderately hypersaline desert lake. Appl. Environ. Microbiol. 43:462–468.

    PubMed  CAS  Google Scholar 

  • Pusheva, M. A., E. N. Detkova, N. P. Bolotina, and T. N. Zhilina. 1992a. Salt dependent hydrogenase in extremely halophilic methylotrophic homoacetogenic bacterium Acetohalobium arabaticum, Abstr. C-135. 7th Int. Symposium on Microbiol Growth on C 1 Compounds. Warwick, U.K., 1992.

    Google Scholar 

  • Pusheva, M. A., E. N. Detkova, N. P. Bolotina, and T. N. Zhilina. 1992b. The properties of periplasmic hydrogenase from extremely halophilic homoacetogenic bacterium Acetohalobium arabaticum. Microbiologiya 61:933–938 (in Russian).

    CAS  Google Scholar 

  • Rengpipat, S., S. E. Lowe, and J. G. Zeikus. 1988. Effect of extreme salt concentration on the physiology and biochemistry of Halobacteroides acetoethylicus. J. Bacteriol. 170:3065–3071.

    PubMed  CAS  Google Scholar 

  • Savage, M. D., Z. Wu, S. L. Daniel, L. L. Lundie, Jr., and H. L. Drake. 1987. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl. Environ. Microbiol. 53:1902–1906.

    PubMed  CAS  Google Scholar 

  • Seifritz, C., S. L. Daniel, and H. L. Drake. 1993. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J. Bacteriol. 175:8008–8013.

    PubMed  CAS  Google Scholar 

  • Simankova, M. V., N. A. Chernych, G. A. Osipov, and G. A. Zavarzin. 1993. Halocella cellulolytica gen. nov., sp.nov., a new obligately anaerobic halophilic cellulolytic bacterium. Syst. Appl. Microbiol. 16:385–389.

    Article  CAS  Google Scholar 

  • Tindall, B. J. 1992. The family Halobacteriaceae. In: The Prokaryotes, 2nd ed., A. Balows, et al. (eds.), pp. 768–808. Springer-Verlag, New York.

    Google Scholar 

  • Tourova, T. P., A. Poltoraus, I. Lebedeva, and T. N. Zhilina. 1992. Partial sequence analysis of the 16 S rRNA of Acetohalobium arabaticum, a new halophilic acetogenic eubacterium. International Conference on Taxonomy and Automated Identification of Bacteria. Prague, 1992.

    Google Scholar 

  • Trüper, H. G., and E. A. Galinski. 1986. Concentrated brines as habitats for microorganisms. Experientia 42:1182–1187.

    Article  Google Scholar 

  • Trüper, H. G., and J. F. Imhoff. 1981. The genus Ectothiorhodospira. In: M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel (eds.), The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, Vol. 1, pp. 274–278. Springer-Verlag, New York.

    Google Scholar 

  • Widdel, F. 1988. Microbiology and ecology of sulfate and sulfur-reducing bacteria. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 469–587. Wiley, New York.

    Google Scholar 

  • Zeikus, J. G., P. W. Hegge, T. E. Thomsons, T. J. Phelps, and T. A. Langworthy. 1983. Isolation and description of Haloanaerobium praevalens gen. nov., sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Curr. Microbiol. 9:225–234.

    Article  CAS  Google Scholar 

  • Zhilina, T. N. 1983. A new obligately halophilic methane-producing bacteria. Microbiologiya 52:375–382 (in Russian).

    CAS  Google Scholar 

  • Zhilina, T. N. 1986. Methanogenic bacteria from hypersaline environments. Syst. Appl. Microbiol. 7:216–222.

    Article  CAS  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1987. Methanohalobium evastigatum gen. nov., sp. nov., extremely halophilic methane-producing archaebacteria. Dolk. Akad. Nauk. SSSR 293:464–468 (in Russian).

    CAS  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1990a. A new extremely halophilic homoacetogen bacteria Acetohalobium arabaticum gen. nov., sp. nov. Dokl. Akad. Nauk SSSR 311: 745–747 (in Russian).

    CAS  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1990b. Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev. 87:315–322.

    Article  CAS  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1991. Anaerobic bacteria, participating in organic matter destruction in halophilic cyanobacterial community. J. Obshei Biol. 52:302–318 (in Russian).

    Google Scholar 

  • Zhilina, T. N., G. A. Zavarzin, E. S. Bulygina, V. V. Kevbrin, and G. A. Osipov. 1992. Ecology, physiology and taxonomy studies on a new taxon Haloanaerobiaceae, Haloincola saccharolytica gen. nov., sp. nov. Syst. Appl. Microbiol. 15:275–284.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Zavarzin, G.A., Zhilina, T.N., Pusheva, M.A. (1994). Halophilic Acetogenic Bacteria. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics