Skip to main content

Transcription Factors, Cofactors and Target Genes Mediating Prolactin Signals

  • Chapter
Prolactin

Part of the book series: Endocrine Updates ((ENDO,volume 12))

Abstract

More than 300 different biological functions have been ascribed to prolactin (PRL) in vertebrates. They comprise six areas of biological regulation: water and electrolyte balance, growth and development, endocrinology and metabolism, brain and behavior, reproduction, immunoregulation and protection (for review see 1). PRL influences these processes via the regulation of gene expression in various tissues. The multitude of processes regulated in different tissues suggests differential modes of action in individual target cells, but many of these mechanisms remain undefined. PRL may affect gene expression directly, for example through transcriptional control, or may do so by indirect mechanisms involving other cellular processes such as regulation of mRNA stability, protein synthesis or secondary modifications of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19:225–268.

    Article  PubMed  CAS  Google Scholar 

  2. Ben-Jonathan N, Mershon JL, Allen DL, Steinmetz RW. Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr Rev. 1996;17:639–669.

    PubMed  CAS  Google Scholar 

  3. Shaw-Bruha CM, Pirrucello SJ, Shull JD. Expression of the prolactin gene in normal and neoplastic human breast tissues and human mammary cell lines: promoter usage and alternative mRNA splicing. Breast Cancer Res Treat. 1997;44:243–253.

    Article  PubMed  CAS  Google Scholar 

  4. Ginsburg E, Vonderhaar BK. Prolactin synthesis and secretion by human breast cancer cells. Cancer Res. 1995;55:2591–2595.

    PubMed  CAS  Google Scholar 

  5. Clevenger CV, Chang WP, Ngo W, Pasha TL, Montone KT, Tomaszewski JE. Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am J Pathol. 1995;146:695–705.

    PubMed  CAS  Google Scholar 

  6. Vonderhaar BK. Prolactin involvement in breast cancer. Endocr Relat Cancer. 1999;6:389–404.

    Article  PubMed  CAS  Google Scholar 

  7. Nowak RA, Rein MS, Heffner LJ, Friedman AJ, Tashjian AH, Jr. Production of prolactin by smooth muscle cells cultured from human uterine fibroid tumors. J Clin Endocrinol Metab. 1993;76:1308–1313.

    Article  PubMed  CAS  Google Scholar 

  8. Groner B, Gouilleux F. Prolactin-mediated gene activation in mammary epithelial cells. Curr Opin Genet Dev. 1995;5:587–594.

    Article  PubMed  CAS  Google Scholar 

  9. Nohara A, Ohmichi M, Koike K, Jikihara H, Kimura A, Masuhara K, Ikegami H, Inoue M, Miyake A, Murata Y. Prolactin stimulates mitogen-activated protein kinase in human leiomyoma cells. Biochem Biophys Res Commun. 1997;238:473–477.

    Article  PubMed  CAS  Google Scholar 

  10. Camarillo IG, Linebaugh BE, Rillema JA. Differential tyrosyl-phosphorylation of multiple mitogen-activated protein kinase isoforms in response to prolactin in Nb2 lymphoma cells. Proc Soc Exp Biol Med. 1997;215:198–202.

    PubMed  CAS  Google Scholar 

  11. Mitev V, Bayat-Sarmadi M, Lemnaouar M, Puissant C, Houdebine LM. The effect of prolactin on casein kinase II, MAP kinase and PKC in rabbit mammary cells and Nb2 rat lymphoid cells. Biochem Pharmacol. 1996;52:1719–1727.

    Article  PubMed  CAS  Google Scholar 

  12. Carey GB, Liberti JP. Stimulation of receptor-associated kinase, tyrosine kinase, and MAP kinase is required for prolactin-mediated macromolecular biosynthesis and mitogenesis in Nb2 lymphoma. Arch Biochem Biophys. 1995;316:179–189.

    Article  PubMed  CAS  Google Scholar 

  13. Buckley AR, Rao YP, Buckley DJ, Gout PW. Prolactin-induced phosphorylation and nuclear translocation of MAP kinase in Nb2 lymphoma cells. Biochem Biophys Res Commun. 1994;204:1158–1164.

    Article  PubMed  CAS  Google Scholar 

  14. Piccoletti R, Bendinelli P, Maroni P. Signal transduction pathway of prolactin in rat liver. Mol Cell Endocrinol. 1997;135:169–177.

    Article  PubMed  CAS  Google Scholar 

  15. Das R, Vonderhaar BK. Involvement of SHC, GRB2, SOS and RAS in prolactin signal transduction in mammary epithelial cells. Oncogene. 1996;13:1139–1145.

    PubMed  CAS  Google Scholar 

  16. Das R, Vonderhaar BK. Activation of raf-1, MEK, and MAP kinase in prolactin responsive mammary cells. Breast Cancer Res Treat. 1996;40:141–149.

    Article  PubMed  CAS  Google Scholar 

  17. al-Sakkaf KA, Dobson PR, Brown BL. Prolactin induced tyrosine phosphorylation of p59fyn may mediate phosphatidylinositol 3-kinase activation in Nb2 cells. J Mol Endocrinol. 1997;19:347–350.

    Article  PubMed  CAS  Google Scholar 

  18. Berlanga JJ, Vara JAF, Martin-Perez J, Garcia-Ruiz JP. Prolactin receptor is associated with c-src kinase in rat liver. Molecular Endocrinology. 1995;9:1461–1467.

    Article  PubMed  CAS  Google Scholar 

  19. Clevenger CV, Medaglia MV. The protein tyrosine kinase P59fyn is associated with prolactin (PRL) receptor and is activated by PRL stimulation of T-lymphocytes. Mol Endocrinol. 1994;8:674–681.

    Article  PubMed  CAS  Google Scholar 

  20. Canbay E, Norman M, Kilic E, Goffin V, Zachary I. Prolactin stimulates the JAK2 and focal adhesion kinase pathways in human breast carcinoma T47-D cells. Biochem J. 1997;324:231–236.

    PubMed  CAS  Google Scholar 

  21. Brisken C, Kaur S, Chavarria TE, Binart N, Sutherland RL, Weinberg RA, Kelly PA, Ormandy CJ. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol. 1999;210:96–106.

    Article  PubMed  CAS  Google Scholar 

  22. Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, Smith F, Markoff E, Dorshkind K. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. Embo J. 1997;16:6926–6935.

    Article  PubMed  CAS  Google Scholar 

  23. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babinet C, Binart N, Kelly PA. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 1997;11:167–178.

    Article  PubMed  CAS  Google Scholar 

  24. Steger RW, Chandrashekar V, Zhao W, Bartke A, Horseman ND. Neuroendocrine and reproductive functions in male mice with targeted disruption of the prolactin gene. Endocrinology. 1998;139:3691–3695.

    Article  PubMed  CAS  Google Scholar 

  25. Lucas BK, Ormandy CJ, Binart N, Bridges RS, Kelly PA. Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology. 1998; 139:4102–4107.

    Article  PubMed  CAS  Google Scholar 

  26. Clement-Lacroix P, Ormandy C, Lepescheux L, Ammann P, Damotte D, Goffin V, Bouchard B, Amling M, Gaillard-Kelly M, Binart N, Baron R, Kelly PA. Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology. 1999;140:96–105.

    Article  PubMed  CAS  Google Scholar 

  27. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA, Jr., Shyamala G, Conneely OM, O’Malley BW. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9:2266–2278.

    Article  PubMed  CAS  Google Scholar 

  28. Richer JK, Lange CA, Manning NG, Owen G, Powell R, Horwitz KB. Convergence of progesterone with growth factor and cytokine signaling in breast cancer. Progesterone receptors regulate signal transducers and activators of transcription expression and activity. J Biol Chem. 1998;273:31317–31326.

    Article  PubMed  CAS  Google Scholar 

  29. Stoecklin E, Wissler M, Schaetzle D, Pfitzner E, Groner B. Interactions in the transcriptional regulation exerted by StatS and by members of the steroid hormone receptor family. J Steroid Biochem Mol Biol. 1999;69:195–204.

    Article  PubMed  CAS  Google Scholar 

  30. Udy GB, Towers RP, Snell RG, Wilkins RI, Park SH, Ram PA, Waxman DJ, Davey HW. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A. 1997;94:7239–7244.

    Article  PubMed  CAS  Google Scholar 

  31. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93:841–850.

    Article  PubMed  CAS  Google Scholar 

  32. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997;11:179–186.

    Article  PubMed  CAS  Google Scholar 

  33. Liu X, Gallego MI, Smith GH, Robinson GW, Hennighausen L. Functional rescue of Stat5a-null mammary tissue through the activation of compensating signals including Stat5b. Cell Growth Differ. 1998;9:795–803.

    PubMed  CAS  Google Scholar 

  34. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93:397–409.

    Article  PubMed  CAS  Google Scholar 

  35. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, Ihle JN. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93:385–395.

    Article  PubMed  CAS  Google Scholar 

  36. Akira S. Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells. 1999;17:138–146.

    Article  PubMed  CAS  Google Scholar 

  37. Oike Y, TakakuraN, Hata A, Kaname T, Akizuki M, Yamaguchi Y, Yasue H, Araki K, Yamamura K, Suda T. Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood. 1999;93:2771–2779.

    PubMed  CAS  Google Scholar 

  38. Yao TP, Oh SP, Fuchs M, Zhou ND, Ch’ng LE, Newsome D, Bronson RT, Li E, Livingston DM, Eckner R. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell. 1998;93:361–372.

    Article  PubMed  CAS  Google Scholar 

  39. Nguyen H, Hiscott J, Pitha PM. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev. 1997;8:293–312.

    Article  PubMed  CAS  Google Scholar 

  40. Too CK. Induction of Sp l activity by prolactin and interleukin-2 in Nb2 T- cells: differential association of Spl-DNA complexes with Stats. Mol Cell Endocrinol. 1997;129:7–16.

    Article  PubMed  CAS  Google Scholar 

  41. Yang M, Hosokawa Y, Kaneko S, Tanaka M, Nakashima K. Structure and characterization of rat cyclin D3 promoter. Gene. 1996;181:153–159.

    Article  PubMed  CAS  Google Scholar 

  42. Yang M, Nomura H, Hu Y, Kaneko S, Kaneko H, Tanaka M, Nakashima K. Prolactininduced expression of TATA-less cyclin D3 gene is mediated by Spl and AP2. Biochem Mol Biol Int. 1998;44:51–58.

    PubMed  CAS  Google Scholar 

  43. Wartmann M, Cella N, Hofer P, Groner B, Liu X, Hennighausen L, Hynes NE. Lactogenic hormone activation of Stat5 and transcription of the beta-casein gene in mammary epithelial cells is independent of p42 ERK2 mitogen-activated protein kinase activity. J Biol Chem. 1996;271:31863–31868.

    Article  PubMed  CAS  Google Scholar 

  44. Pellegrini S, Dusanter-Fourt I. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur J Biochem. 1997;248:615–633.

    Article  PubMed  CAS  Google Scholar 

  45. Darnell JE, Jr. STATs and gene regulation. Science. 1997;277: 1630–1635.

    Article  PubMed  CAS  Google Scholar 

  46. Wakao H, Gouilleux F, Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. Embo J. 1994;13:2182–2191.

    PubMed  CAS  Google Scholar 

  47. DaSilva L, Rui H, Erwin RA, Zack Howard OM, Kirken RA, Malabarba MG, Hackett RH, Lamer AC, Farrar WL. Prolactin recruits STAT 1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580. Mol Cell Endocrinol. 1996;117:131–140.

    Google Scholar 

  48. Kirken RA, Malabarba MG, Xu J, Liu X, Farrar WL, Hennighausen L, Lamer AC, Grimley PM, Rui H. Prolactin stimulates serine/tyrosine phosphorylation and formation of heterocomplexes of multiple Stat5 isoforms in Nb2 lymphocytes. J Biol Chem. 1997;272:14098–14103.

    Article  PubMed  CAS  Google Scholar 

  49. Mayr S, Welte T, Windegger M, Lechner J, May P, Heinrich PC, Horn F, Doppler W. Selective coupling of STAT factors to the mouse prolactin receptor. Eur J Biochem. 1998;258:784–793.

    Article  PubMed  CAS  Google Scholar 

  50. Schaber JD, Fang H, Xu J, Grimley PM, Rui H. Prolactin activates Statl but does not antagonize Statl activation and growth inhibition by type I interferons in human breast cancer cells. Cancer Res. 1998;58:1914–1919.

    PubMed  CAS  Google Scholar 

  51. Vinkemeier U, Cohen SL, Moarefi I, Chait BT, Kuriyan J, Darnell JE, Jr. DNA binding of in vitro activated Statl alpha, Statl beta and truncated Statl: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. Embo J. 1996;15:5616–5626.

    PubMed  CAS  Google Scholar 

  52. John S, Vinkemeier U, Soldaini E, Darnell JE, Jr., Leonard WJ. The significance of tetramerization in promoter recruitment by Stat5. Mol Cell Biol. 1999;19:1910–1918.

    PubMed  CAS  Google Scholar 

  53. Strehlow I, Schindler C. Amino-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. J Biol Chem. 1998;273:28049–28056.

    Article  PubMed  CAS  Google Scholar 

  54. Becker S, Groner B, Muller CW. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature. 1998;394:145–151.

    Article  PubMed  CAS  Google Scholar 

  55. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE, Jr., Kuriyan J. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell. 1998;93:827–839.

    Article  PubMed  CAS  Google Scholar 

  56. Pezet A, Ferrag F, Kelly PA, Edery M. Tyrosine docking sites of the rat prolactin receptor required for association and activation of stat5. J Biol Chem. 1997;272:25043–25050.

    Article  PubMed  CAS  Google Scholar 

  57. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–264.

    Article  PubMed  CAS  Google Scholar 

  58. Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE, Jr. Interferon activation of the transcription factor Stat91 involves dimerization through SH2phosphotyrosyl peptide interactions. Cell. 1994;76:821–828.

    Article  PubMed  CAS  Google Scholar 

  59. Gouilleux F, Wakao H, Mundt M, Groner B. Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. Embo J. 1994;13:4361–4369.

    PubMed  CAS  Google Scholar 

  60. Ng J, Cantrell D. STAT3 is a serine kinase target in T lymphocytes. Interleukin 2 and T cell antigen receptor signals converge upon serine 727. J Biol Chem. 1997;272:24542–24549.

    Article  PubMed  CAS  Google Scholar 

  61. Horvath CM, Darnell JE, Jr. The antiviral state induced by alpha interferon and gamma interferon requires transcriptionally active Statl protein. J Virol. 1996;70:647–650.

    PubMed  CAS  Google Scholar 

  62. Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JE, Jr. Transcriptionally active Statl is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci U S A. 1996;93:7673–7678.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang X, Blenis J, Li HC, Schindler C, Chen-Kiang S. Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science. 1995;267:1990–1994.

    Article  PubMed  CAS  Google Scholar 

  64. Wen Z, Darnell JE, Jr. Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Statl and Stat3. Nucleic Acids Res. 1997;25:2062–2067.

    Article  PubMed  CAS  Google Scholar 

  65. Wang D, Moriggl R, Stravopodis D, Carpino N, Marine JC, Teglund S, Feng J, Ihle JN. A small amphipathic alpha-helical region is required for transcriptional activities and proteasome-dependent turnover of the tyrosine-phosphorylated stat5. Embo J. 2000;19:392–399.

    Article  PubMed  CAS  Google Scholar 

  66. Decker T, Kovarik P, Meinke A. GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression. J Interferon Cytokine Res. 1997;17:121–134.

    Article  PubMed  CAS  Google Scholar 

  67. Ihle JN. STATs: signal transducers and activators of transcription. Cell. 1996;84:331–334.

    Article  PubMed  CAS  Google Scholar 

  68. Darnell JE, Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264: 1415–1421.

    Article  PubMed  CAS  Google Scholar 

  69. Verdier F, Rabionet R, Gouilleux F, Beisenherz-Huss C, Varlet P, Muller O, Mayeux P, Lacombe C, Gisselbrecht S, Chretien S. A sequence of the CIS gene promoter interacts preferentially with two associated STAT5A dimers: a distinct biochemical difference between STAT5A and STAT5B. Mol Cell Biol. 1998;18:5852–5860.

    PubMed  CAS  Google Scholar 

  70. Leaman DW, Leung S, Li X, Stark GR. Regulation of STAT-dependent pathways by growth factors and cytokines. Faseb J. 1996;10:1578–1588.

    PubMed  CAS  Google Scholar 

  71. Schindler C, Darnell JE, Jr. Transcriptional responses to polypeptide ligands: the JAKSTAT pathway. Annu Rev Biochem. 1995;64:621–651.

    Article  PubMed  CAS  Google Scholar 

  72. Müller M, Laxton C, Briscoe J, Schindler C, Improta T, Darnell JE, Jr., Stark GR, Kerr IM. Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways. Embo J. 1993;12:4221–4228.

    PubMed  Google Scholar 

  73. Yu-Lee LY, Luo G, Book ML, Morris SM. Lactogenic hormone signal transduction. Biol Reprod. 1998;58:295–301.

    Article  PubMed  CAS  Google Scholar 

  74. Wang Y, O’Neal KD, Yu-Lee L. Multiple prolactin (PRL) receptor cytoplasmic residues and Statl mediate PRL signaling to the interferon regulatory factor-1 promoter. Mol Endocrinol. 1997;11:1353–1364.

    Article  PubMed  CAS  Google Scholar 

  75. Wang YF, Yu-Lee LY. Multiple stat complexes interact at the interferon regulatory factor-1 interferon-gamma activation sequence in prolactin-stimulated Nb2 T cells. Mol Cell Endocrinol. 1996;121:19–28.

    Article  PubMed  CAS  Google Scholar 

  76. Stevens AM, Wang YF, Sieger KA, Lu HF, Yu-Lee LY. Biphasic transcriptional regulation of the interferon regulatory factor- 1 gene by prolactin: involvement of gammainterferon-activated sequence and Stat-related proteins. Mol Endocrinol. 1995;9:513–525.

    Article  PubMed  CAS  Google Scholar 

  77. Durbin JE, Hackenmiller R, Simon MC, Levy DE. Targeted disruption of the mouse Statl gene results in compromised innate immunity to viral disease. Cell. 1996;84:443–450.

    Article  PubMed  CAS  Google Scholar 

  78. Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D, Carver-Moore K, DuBois RN, Clark R, Aguet M, Schreiber RD. Targeted disruption of the Statl gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell. 1996;84:431–442.

    Article  PubMed  CAS  Google Scholar 

  79. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE, Jr. Stat3 as an oncogene. Cell. 1999;98:295–303.

    Article  PubMed  CAS  Google Scholar 

  80. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A. 1997;94:3801–3804.

    Article  PubMed  CAS  Google Scholar 

  81. Nakajima K, Yamanaka Y, Nakae K, Kojima H, Ichiba M, Kiuchi N, Kitaoka T, Fukada T, Hibi M, Hirano T. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in Ml leukemia cells. Embo J. 1996;15:3651–3658.

    PubMed  CAS  Google Scholar 

  82. Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T, Akira S. STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci U S A. 1996;93:3963–3966.

    Article  PubMed  CAS  Google Scholar 

  83. Chapman RS, Lourenco PC, Tonner E, Flint DJ, Seibert S, Takeda K, Akira S, Clarke AR, Watson CJ. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 1999;13:2604–2616.

    Article  PubMed  CAS  Google Scholar 

  84. Zhong Z, Wen Z, Darnell JE, Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994;264:95–98.

    Article  PubMed  CAS  Google Scholar 

  85. Schaefer TS, Sanders LK, Nathans D. Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci USA. 1995;92:9097–9101.

    Article  PubMed  CAS  Google Scholar 

  86. Caldenhoven E, van Dijk TB, Solari R, Armstrong J, Raaijmakers JAM, Lammers JWJ, Koenderman L, de Groot RP. STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J Biol Chem. 1996;271:13221–13227.

    PubMed  CAS  Google Scholar 

  87. Groner B, Fritsche M, Stoecklin E, Berchtold S, Merkte C, Moriggl R, Pfitzner E. The transactivation potential of Stat5 is regulated through its DNA binding activity and interactions with heterologous transcription factors. Proceedings of the International Conference on Growth Hormone Action, Boston, 1999.2000;in press.

    Google Scholar 

  88. Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci U S A. 1995;92:8831–8835.

    Article  PubMed  CAS  Google Scholar 

  89. Moriggl R, Gouilleux-Gruart V, Jahne R, Berchtold S, Gartmann C, Liu X, Hennighausen L, Sotiropoulos A, Groner B, Gouilleux F. Deletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol Cell Biol. 1996;16:5691–5700.

    PubMed  CAS  Google Scholar 

  90. Wang D, Stravopodis D, Teglund S, Kitazawa J, Ihle JN. Naturally occurring dominant negative variants of Stat5. Mol Cell Biol. 1996;16:6141–6148.

    PubMed  CAS  Google Scholar 

  91. Bovolenta C, Testolin L, Benussi L, Lievens PM, Liboi E. Positive selection of apoptosis-resistant cells correlates with activation of dominant-negative STATS. J Biol Chem. 1998;273:20779–20784.

    Article  PubMed  CAS  Google Scholar 

  92. Garimorth K, Welte T, Doppler W. Generation of carboxy-terminally deleted forms of STATS during preparation of cell extracts. Exp Cell Res. 1999;246:148–151.

    Article  PubMed  CAS  Google Scholar 

  93. Azam M, Lee C, Strehlow I, Schindler C. Functionally distinct isoforms of STATS are generated by protein processing. Immunity. 1997;6:691–701.

    Article  PubMed  CAS  Google Scholar 

  94. Lee C, Piazza F, Brutsaert S, Valens J, Strehlow I, Jarosinski M, Saris C, Schindler C. Characterization of the StatS protease. J Biol Chem. 1999;274:26767–26775.

    Article  PubMed  CAS  Google Scholar 

  95. Yamashita H, Xu J, Erwin RA, Farrar WL, Kirken RA, Rui H. Differential control of the phosphorylation state of proline-juxtaposed serine residues Ser725 of Stat5a and Ser730 of Stat5b in prolactin-sensitive cells. J Biol Chem. 1998;273:30218–30224.

    Article  PubMed  CAS  Google Scholar 

  96. Moriggl R, Topham DJ, Teglund S, Sexl V, McKay C, Wang D, Hoffmeyer A, van Deursen J, Sangster MY, Bunting KD, Grosveld GC, Ihle JN. StatS is required for IL-2induced cell cycle progression of peripheral T cells. Immunity. 1999;10:249–259.

    Article  PubMed  CAS  Google Scholar 

  97. Feldman GM, Rosenthal LA, Liu X, Hayes MP, Wynshaw-Boris A, Leonard WJ, Hennighausen L, Finbloom DS. STAT5A-deficient mice demonstrate a defect in granulocyte-macrophage colony-stimulating factor-induced proliferation and gene expression. Blood. 1997;90:1768–1776.

    PubMed  CAS  Google Scholar 

  98. Park SH, Liu X, Hennighausen L, Davey HW, Waxman DJ. Distinctive roles of STAT5a and STAT5b in sexual dimorphism of hepatic P450 gene expression. Impact of STAT5a gene disruption. J Biol Chem. 1999;274:7421–7430.

    Article  PubMed  CAS  Google Scholar 

  99. Davey HW, Park SH, Grattan DR, McLachlan MJ, Waxman DJ. STAT5b-deficient mice are growth hormone pulse-resistant. Role of STAT5b in sex-specific liver p450 expression. J Biol Chem. 1999;274:35331–35336.

    Article  PubMed  CAS  Google Scholar 

  100. Imada K, Bloom ET, Nakajima H, Horvath-Arcidiacono JA, Udy GB, Davey HW, Leonard WJ. Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J Exp Med. 1998;188:2067–2074.

    Article  PubMed  CAS  Google Scholar 

  101. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–959.

    Article  PubMed  CAS  Google Scholar 

  102. Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996;384:641–643.

    Article  PubMed  CAS  Google Scholar 

  103. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM. Molecular cloning and functional analysis of the adenovirus E1A- associated 300kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994;8:869–884.

    Article  PubMed  CAS  Google Scholar 

  104. Arias J, Alberts AS, Brindle P, Claret FX, Smeal T, Karin M, Feramisco J, Montminy M. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature. 1994;370:226–229.

    Article  PubMed  CAS  Google Scholar 

  105. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993;365:855–859.

    Article  PubMed  CAS  Google Scholar 

  106. Kwok RP, Lundblad JR, Chrivia JC, Richards JP, Bachinger HP, Brennan RG, Roberts SG, Green MR, Goodman RH. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature. 1994;370:223–226.

    Article  PubMed  CAS  Google Scholar 

  107. Eckner R. p300 and CBP as transcriptional regulators and targets of oncogenic events. Biol Chem. 1996;377:685–688.

    PubMed  CAS  Google Scholar 

  108. Janknecht R, Hunter T. Transcription. A growing coactivator network. Nature. 1996;383:22–23.

    Article  PubMed  CAS  Google Scholar 

  109. Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM. Role of CBP/P300 in nuclear receptor signalling. Nature. 1996;383:99–103.

    Article  PubMed  CAS  Google Scholar 

  110. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996;85:403–414.

    Article  PubMed  CAS  Google Scholar 

  111. Pfitzner E, Jahne R, Wissler M, Stoecklin E, Groner B. p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of StatS, but does not participate in the Stat5- mediated suppression of the glucocorticoid response. Mol Endocrinol. 1998;12:1582–1593.

    Article  PubMed  CAS  Google Scholar 

  112. Gingras S, Simard J, Groner B, Pfitzner E. p300/CBP is required for transcriptional induction by interleukin-4 and interacts with Stat6. Nucleic Acids Res. 1999;27:2722–2729.

    Article  PubMed  CAS  Google Scholar 

  113. Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D’Andrea A, Livingston DM. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature. 1996;383:344–347.

    Article  PubMed  CAS  Google Scholar 

  114. Paulson M, Pisharody S, Pan L, Guadagno S, Mui AL, Levy DE. Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem. 1999;274:25343–25349.

    Article  PubMed  CAS  Google Scholar 

  115. Horvai AE, Xu L, Korzus E, Brard G, Kalafus D, Mullen TM, Rose DW, Rosenfeld MG, Glass CK. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci USA. 1997;94:1074–1079.

    Article  PubMed  CAS  Google Scholar 

  116. Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE, Jr. Two contact regions between Statl and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci USA. 1996;93:15092–15096.

    Article  PubMed  CAS  Google Scholar 

  117. Lechner J, Welte T, Doppler W. Mechanism of interaction between the glucocorticoid receptor and Stat5: role of DNA-binding. Immunobiology. 1997;198:112–123.

    Article  PubMed  CAS  Google Scholar 

  118. Lechner J, Welte T, Tomasi JK, Bruno P, Cairns C, Gustafsson J, Doppler W. Promoter-dependent synergy between glucocorticoid receptor and Stat5 in the activation of beta-casein gene transcription. J Biol Chem. 1997;272:20954–20960.

    Article  PubMed  CAS  Google Scholar 

  119. Stoecklin E, Wissler M, Gouilleux F, Groner B. Functional interactions between StatS and the glucocorticoid receptor. Nature. 1996;383:726–728.

    Article  CAS  Google Scholar 

  120. Stoecklin E, Wissler M, Moriggl R, Groner B. Specific DNA binding of StatS, but not of glucocorticoid receptor, is required for their functional cooperation in the regulation of gene transcription. Mol Cell Biol. 1997;17:6708–6716.

    PubMed  CAS  Google Scholar 

  121. Cella N, Groner B, Hynes NE. Characterization of Stat5a and Stat5b homodimers and heterodimers and their association with the glucocortiocoid receptor in mammary cells. Mol Cell Biol. 1998;18:1783–1792.

    PubMed  CAS  Google Scholar 

  122. Luo G, Yu-Lee L. Transcriptional inhibition by Stat5. Differential activities at growth-related versus differentiation-specific promoters. J Biol Chem. 1997;272:26841–26849.

    Article  PubMed  CAS  Google Scholar 

  123. Luo G, Yu-Lee L. Stat5b inhibits NFkappaB-mediated signaling. Mol Endocrinol. 2000;14:114–123.

    Article  PubMed  CAS  Google Scholar 

  124. Ganguly TC, Liu Y, Hyde JF, Hagenbuch B, Meier PJ, Vore M. Prolactin increases Na+/ taurocholate cotransport in isolated hepatocytes from postpartum rats and ovariectomized rats. J Pharmacol Exp Ther. 1993;267:82–87.

    PubMed  CAS  Google Scholar 

  125. Ganguly TC, O’Brien ML, Karpen SJ, Hyde JF, Suchy FJ, Vore M. Regulation of the rat liver sodium-dependent bile acid cotransporter gene by prolactin. Mediation of transcriptional activation by Stat5. J Clin Invest. 1997;99:2906–2914.

    Article  PubMed  CAS  Google Scholar 

  126. Moldrup A, Petersen ED, Nielsen JH. Effects of sex and pregnancy hormones on growth hormone and prolactin receptor gene expression in insulin-producing cells. Endocrinology. 1993;133:1165–1172.

    Article  PubMed  CAS  Google Scholar 

  127. Galsgaard ED, Nielsen JH, Moldrup A. Regulation of prolactin receptor (PRLR) gene expression in insulin-producing cells. Prolactin and growth hormone activate one of the rat PRL-R gene promoters via STAT5a and STAT5b. J Biol Chem. 1999;274:18686–18692.

    Article  PubMed  CAS  Google Scholar 

  128. Yu-Lee LY. Molecular actions of prolactin in the immune system. Proc Soc Exp Biol Med. 1997;215:35–52.

    PubMed  CAS  Google Scholar 

  129. Duncan GS, Mittrucker HW, Kagi D, Matsuyama T, Mak TW. The transcription factor interferon regulatory factor-1 is essential for natural killer cell function in vivo. J Exp Med. 1996;184:2043–2048.

    Article  PubMed  CAS  Google Scholar 

  130. Yu-Lee LY, Hrachovy JA, Stevens AM, Schwarz LA. Interferon-regulatory factor 1 is an immediate-early gene under transcriptional regulation by prolactin in Nb2 T cells. Mol Cell Biol. 1990;10:3087–3094.

    PubMed  CAS  Google Scholar 

  131. Clevenger CV, Sillman AL, Hanley-Hyde J, Prystowsky MB. Requirement for prolactin during cell cycle regulated gene expression in cloned T-lymphocytes. Endocrinology. 1992;130:3216–3222.

    Article  PubMed  CAS  Google Scholar 

  132. Stevens AM, Yu-Lee LY. The transcription factor interferon regulatory factor-1 is expressed during both early G1 and the GI /S transition in the prolactin-induced lymphocyte cell cycle. Mol Endocrinol. 1992;6:2236–2243.

    Article  PubMed  CAS  Google Scholar 

  133. Jabbour HN, Critchley HOD, Yu-Lee LY, Boddy SC. Localization of interferon regulatory factor-1 (IRF-1) in nonpregnant human endometrium: expression of IRF-1 is up-regulated by prolactin during the secretory phase of the menstrual cycle. J Clin Endocrinol Metab. 1999;84:4260–4265.

    Article  PubMed  CAS  Google Scholar 

  134. Jabbour HN, Critchley HOD, Boddy SC. Expression of functional prolactin receptors in nonpregnant human endometrium: janus kinase-2, signal transducer and activator of transcription-1 (STAT1), and STAT5 proteins are phosphorylated after stimulation with prolactin. J Clin Endocrinol Metab. 1998;83:2545–2553.

    Article  PubMed  CAS  Google Scholar 

  135. Yu-Lee LY. Prolactin stimulates transcription of growth-related genes in Nb2 T lymphoma cells. Mol Cell Endocrinol. 1990;68:21–28.

    Article  PubMed  CAS  Google Scholar 

  136. Too CK. Differential expression of elongation factor-2, alpha4 phosphoprotein and CdcS-like protein in prolactin-dependent/independent rat lymphoid cells. Mol Cell Endocrinol. 1997;131:221–232.

    Article  PubMed  CAS  Google Scholar 

  137. Too CK, Knee R, Pinette AL, Li AW, Murphy PR. Prolactin induces expression of FGF-2 and a novel FGF-responsive NonO/p54nrb-related mRNA in rat lymphoma cells. Mol Cell Endocrinol. 1998;137:187–195.

    Article  PubMed  CAS  Google Scholar 

  138. Wilson TM, Yu-Lee LY, Kelley MR. Coordinate gene expression of luteinizing hormone-releasing hormone (LHRH) and the LHRH-receptor after prolactin stimulation in the rat Nb2 T-cell line: implications for a role in immunomodulation and cell cycle gene expression. Mol Endocrinol. 1995;9:44–53.

    Article  PubMed  CAS  Google Scholar 

  139. Hosokawa Y, Yang M, Kaneko S, Tanaka M, Nakashima K. Prolactin induces switching of T-cell receptor gene expression from alpha to gamma in rat Nb2 pre-T lymphoma cells(1). Biochem Biophys Res Commun. 1996;220:958–962.

    Article  CAS  Google Scholar 

  140. Axtell SM, Truong TM, O’Neal KD, Yu-Lee LY. Characterization of a prolactininducible gene, clone 15, in T cells. Mol Endocrinol. 1995;9:312–318.

    Article  PubMed  CAS  Google Scholar 

  141. Morris SM, Anaya P, Xiang X, Morris NR, May GS, Yu-Lee L. A prolactin-inducible T cell gene product is structurally similar to the Aspergillus nidulans nuclear movement protein NUDC. Mol Endocrinol. 1997;11:229–236.

    Article  PubMed  CAS  Google Scholar 

  142. Yang M, Hosokawa Y, Hu Y, Kaneko S, Kaneko H, Tanaka M, Nakashima K. Cloning and functional analysis of rat cyclin D2 promoter: multiple prolactin-responsive elements. Biochem Mol Biol Int. 1997;43:749–754.

    PubMed  CAS  Google Scholar 

  143. Hosokawa Y, Yang M, Kaneko S, Tanaka M, Nakashima K. Synergistic gene expressions of cyclin E, cdk2, cdk5 and E2F-1 during the prolactin-induced G1/S transition in rat Nb2 pre-T lymphoma cells. Biochem Mol Biol Int. 1995;37:393–399.

    PubMed  CAS  Google Scholar 

  144. Leff MA, Buckley DJ, Krumenacker JS, Reed JC, Miyashita T, Buckley AR. Rapid modulation of the apoptosis regulatory genes, bc1–2 and bax by prolactin in rat Nb2 lymphoma cells. Endocrinology. 1996;137:5456–5462.

    Article  PubMed  CAS  Google Scholar 

  145. Borg KE, Zhang M, Hegge D, Stephen RL, Buckley DJ, Magnuson NS, Buckley AR. Prolactin regulation of pim-1 expression: positive and negative promoter elements. Endocrinology. 1999;140:5659–5668.

    Article  PubMed  CAS  Google Scholar 

  146. Buckley AR, Buckley DJ, Leff MA, Hoover DS, Magnuson NS. Rapid induction of pim-1 expression by prolactin and interleukin-2 in rat Nb2 lymphoma cells. Endocrinology. 1995;136:5252–5259.

    Article  PubMed  CAS  Google Scholar 

  147. Krumenacker JS, Buckley DJ, Leff MA, McCormack JT, de Jong G, Gout PW, Reed JC, Miyashita T, Magnuson NS, Buckley AR. Prolactin-regulated apoptosis of Nb2 lymphoma cells: pim-1, bcl-2, and bax expression. Endocrine. 1998;9:163–170.

    Article  PubMed  CAS  Google Scholar 

  148. Nanbu-Wakao R, Fujitani Y, Masuho Y, Muramatu M, Wakao H. Prolactin enhances CCAAT enhancer-binding protein-beta (C/EBP beta) and peroxisome proliferatoractivated receptor gamma (PPAR gamma) messenger RNA expression and stimulates adipogenic conversion of NIH-3T3 cells. Mol Endocrinol. 2000;14:307–316.

    Article  PubMed  CAS  Google Scholar 

  149. Raught B, Liao WS, Rosen JM. Developmentally and hormonally regulated CCAAT/ enhancer-binding protein isoforms influence beta-casein gene expression. Mol Endocrinol. 1995;9:1223–1232.

    Article  PubMed  CAS  Google Scholar 

  150. Seagroves TN, Krnacik S, Raught B, Gay J, Burgess-Beusse B, Darlington GJ, Rosen JM. C/EBPbeta, but not C/EBPalpha, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev. 1998;12:1917–1928.

    Article  PubMed  CAS  Google Scholar 

  151. Robinson GW, Johnson PF, Hennighausen L, Sterneck E. The C/EBPbeta transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes Dev. 1998;12:1907–1916.

    Article  PubMed  CAS  Google Scholar 

  152. Doppler W, Welte T, Philipp S. CCAAT/enhancer-binding protein isoforms beta and delta are expressed in mammary epithelial cells and bind to multiple sites in the beta-casein gene promoter. J Biol Chem. 1995;270:17962–17969.

    Article  PubMed  CAS  Google Scholar 

  153. Sterneck E, Tessarollo L, Johnson PF. An essential role for C/EBPbeta in female reproduction. Genes Dev. 1997;11:2153–2162.

    Article  PubMed  CAS  Google Scholar 

  154. Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. Embo J. 1997;16:7432–7443.

    Article  PubMed  CAS  Google Scholar 

  155. Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR, Darlington GJ. Impaired energy homeostasis in C/EBP alpha knockout mice. Science. 1995;269:1108–1112.

    Article  PubMed  CAS  Google Scholar 

  156. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell. 1999;4:585–595.

    Article  PubMed  CAS  Google Scholar 

  157. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, Eto K, Tsubamoto Y, Okuno A, Murakami K, Sekihara H, Hasegawa G, Naito M, Toyoshima Y, Tanaka S, Shiota K, Kitamura T, Fujita T, Ezaki O, Aizawa S, Nagai R, Tobe K, Kimura S, Kadowaki T. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell. 1999;4:597–609.

    Article  PubMed  CAS  Google Scholar 

  158. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999;4:611–617.

    Article  PubMed  CAS  Google Scholar 

  159. Lowell BB. PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell. 1999;99:239–242.

    Article  PubMed  CAS  Google Scholar 

  160. McAveney KM, Gimble JM, Yu-Lee L. Prolactin receptor expression during adipocyte differentiation of bone marrow stroma. Endocrinology. 1996;137:5723–5726.

    Article  PubMed  CAS  Google Scholar 

  161. Horseman ND, Buntin JD. Regulation of pigeon cropmilk secretion and parental behaviors by prolactin. Annu Rev Nutr. 1995;15:213–238.

    Article  PubMed  CAS  Google Scholar 

  162. Pukac LA, Horseman ND. Regulation of cloned prolactin-inducible genes in pigeon crop. Mol Endocrinol. 1987;1:188–194.

    Article  PubMed  CAS  Google Scholar 

  163. Xu YH, Horseman ND. Nuclear proteins and prolactin-induced annexin Icp35 gene transcription. Mol Endocrinol. 1992;6:375–383.

    Article  PubMed  CAS  Google Scholar 

  164. Sidis Y, Horseman ND. Prolactin induces rapid p95/p70 tyrosine phosphorylation, and protein binding to GAS-like sites in the anx Icp35 and c-fos genes. Endocrinology. 1994;134:1979–1985.

    Article  PubMed  CAS  Google Scholar 

  165. Sun M, Liu Y, Gibb W. Distribution of annexin I and II in term human fetal membranes, decidua and placenta. Placenta. 1996;17:181–184.

    Article  PubMed  CAS  Google Scholar 

  166. Groner B, Altiok S, Meier V. Hormonal regulation of transcription factor activity in mammary epithelial cells. Mol Cell Endocrinol. 1994;100:109–114.

    Article  PubMed  CAS  Google Scholar 

  167. Burdon TG, Maitland KA, Clark At Wallace R, Watson CJ. Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an interferon-gamma activation site-related element. Mol Endocrinol. 1994;8:1528–1536.

    Article  PubMed  CAS  Google Scholar 

  168. Li S, Rosen JM. Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol Cell Biol. 1995;15:2063–2070.

    PubMed  CAS  Google Scholar 

  169. Djiane J, Daniel N, Bignon C, Paly J, Waters M, Vacher P, Dufy B. Prolactin receptor and signal transduction to milk protein genes. Proc Soc Exp Biol Med. 1994;206:299–303.

    PubMed  CAS  Google Scholar 

  170. Ali S, Edery M, Pellegrini I, Lesueur L, Paly J, Djiane J, Kelly PA. The Nb2 form of prolactin receptor is able to activate a milk protein gene promoter. Mol Endocrinol. 1992;6:1242–1248.

    Article  PubMed  CAS  Google Scholar 

  171. Berlanga JJ, Garcia-Ruiz JP, Perrot-Applanat M, Kelly PA, Edery M. The short form of the prolactin (PRL) receptor silences PRL induction of the beta-casein gene promoter. Mol Endocrinol. 1997;11:1449–1457.

    Article  PubMed  CAS  Google Scholar 

  172. Marte BM, Meyer T, Stabel S, Standke GJ, Jaken S, Fabbro D, Hynes NE. Protein kinase C and mammary cell differentiation: involvement of protein kinase C alpha in the induction of beta-casein expression. Cell Growth Differ. 1994;5:239–247.

    PubMed  CAS  Google Scholar 

  173. Chida D, Wakao H, Yoshimura A, Miyajima A. Transcriptional regulation of the beta-casein gene by cytokines: cross-talk between STAT5 and other signaling molecules. Mol Endocrinol. 1998;12:1792–1806.

    Article  PubMed  CAS  Google Scholar 

  174. Pircher TJ, Petersen H, Gustafsson JA, Haldosen LA. Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a. Mol Endocrinol. 1999;13:555–565.

    Article  PubMed  CAS  Google Scholar 

  175. Gao J, Horseman ND. Prolactin-independent modulation of the beta-casein response element by Erk2 MAP kinase. Cell Signal. 1999;11:205–210.

    Article  PubMed  CAS  Google Scholar 

  176. Winklehner-Jennewein P, Geymayer S, Lechner J, Welte T, Hansson L, Geley S, Doppler W. A distal enhancer region in the human beta-casein gene mediates the response to prolactin and glucocorticoid hormones. Gene. 1998;217:127–139.

    Article  PubMed  CAS  Google Scholar 

  177. Ali S, Chen Z, Lebrun JJ, Vogel W, Kharitonenkov A, Kelly PA, Ullrich A. PTP1D is a positive regulator of the prolactin signal leading to beta-casein promoter activation. Embo J. 1996;15:135–142.

    PubMed  CAS  Google Scholar 

  178. Altiok S, Groner B. beta-Casein mRNA sequesters a single-stranded nucleic acid-binding protein which negatively regulates the beta-casein gene promoter. Mol Cell Biol. 1994;14:6004–6012.

    Article  PubMed  CAS  Google Scholar 

  179. Raught B, Khursheed B, Kazansky A, Rosen J. YY1 represses beta-casein gene expression by preventing the formation of a lactation-associated complex. Mol Cell Biol. 1994;14:1752–1763.

    PubMed  CAS  Google Scholar 

  180. Schmitt-Ney M, Doppler W, Ball RK, Groner B. Beta-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammarygland-specific nuclear factor. Mol Cell Biol. 1991;11:3745–3755.

    PubMed  CAS  Google Scholar 

  181. Meier VS, Groner B. The nuclear factor YY 1 participates in repression of the beta-casein gene promoter in mammary epithelial cells and is counteracted by mammary gland factor during lactogenic hormone induction. Mol Cell Biol. 1994;14:128–137.

    PubMed  CAS  Google Scholar 

  182. Thomas MJ, Seto E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene. 1999;236:197–208.

    Article  PubMed  CAS  Google Scholar 

  183. Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge SJ, Weinberg RA. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell. 1995;82:621–630.

    Article  PubMed  CAS  Google Scholar 

  184. Matsumura I, Kitamura T, Wakao H, Tanaka H, Hashimoto K, Albanese C, Downward J, Pestell RG, Kanakura Y. Transcriptional regulation of the cyclin Dl promoter by STATS: its involvement in cytokine-dependent growth of hematopoietic cells. Embo J. 1999;18:1367–1377.

    Article  PubMed  CAS  Google Scholar 

  185. Kaneko H, Fujikawa T, Alam KS, Kaneko S, Tanaka M, Hibasami H, Nakashima K. Cooperative and differential effects of estrogen, prolactin, 22K and 20K human growth hormones on cyclin D1/PRAD1 gene expression in T-47D human breast cancer cells. Biochem Mol Biol Int. 1998;46:411–414.

    PubMed  CAS  Google Scholar 

  186. Ruff SJ, Leers-Sucheta S, Meiner MH, Cohen S. Induction and activation of Stat 5 in the ovaries of pseudopregnant rats. Endocrinology. 1996;137:4095–4099.

    Article  PubMed  CAS  Google Scholar 

  187. Russell DL, Richards JS. Differentiation-dependent prolactin responsiveness and stat (signal transducers and activators of transcription) signaling in rat ovarian cells. Mol Endocrinol.1999;13:2049–2064.

    Article  PubMed  CAS  Google Scholar 

  188. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)deficient mice. Cell. 1996;85:733–744.

    Article  PubMed  CAS  Google Scholar 

  189. Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell. 1996;85:721–732.

    Article  PubMed  CAS  Google Scholar 

  190. Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K. Mice lacking p27(Kipl) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996;85:707–720.

    Article  PubMed  CAS  Google Scholar 

  191. Albarracin CT, Parmer TG, Duan WR, Nelson SE, Gibori G. Identification of a major prolactin-regulated protein as 20 alpha-hydroxysteroid dehydrogenase: coordinate regulation of its activity, protein content, and messenger ribonucleic acid expression. Endocrinology. 1994;134:2453–2460.

    Article  PubMed  CAS  Google Scholar 

  192. Martel C, Labrie C, Dupont E, Couet J, Trudel C, Rheaume E, Simard J, Luu-The V, Pelletier G, Labrie F. Regulation of 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase expression and activity in the hypophysectomized rat ovary: interactions between the stimulatory effect of human chorionic gonadotropin and the luteolytic effect of prolactin. Endocrinology. 1990;127:2726–2737.

    Article  PubMed  CAS  Google Scholar 

  193. Martel C, Gagné D, Couet J, Labrie Y, Simard J, Labrie F. Rapid modulation of ovarian 3 beta-hydroxysteroid dehydrogenase/delta 5- delta 4 isomerase gene expression by prolactin and human chorionic gonadotropin in the hypophysectomized rat. Mol Cell Endocrinol. 1994;99:63–71.

    Article  PubMed  CAS  Google Scholar 

  194. Feltus FA, Groner B, Melner MH. StatS-mediated regulation of the human type II 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene: activation by prolactin. Mol Endocrinol. 1999;13:1084–1093.

    Article  PubMed  CAS  Google Scholar 

  195. Russell DL, Norman RL, Dajee M, Liu X, Henninghausen L, Richards JS. Prolactininduced activation and binding of stat proteins to the IL-6RE of the alpha 2-macroglobulin (alpha 2M) promoter: relation to the expression of alpha 2M in the rat ovary. Biol Reprod. 1996;55:1029–1038.

    Article  PubMed  CAS  Google Scholar 

  196. Dajee M, Kazansky AV, Raught B, Hocke GM, Fey GH, Richards JS. Prolactin induction of the alpha 2-Macroglobulin gene in rat ovarian granulosa cells: stat 5 activation and binding to the interleukin-6 response element. Mol Endocrinol. 1996;10:171–184.

    Article  PubMed  CAS  Google Scholar 

  197. Dajee M, Fey GH, Richards JS. Stat 51) and the orphan nuclear receptors regulate expression of the alpha2-macroglobulin (alpha2M) gene in rat ovarian granulosa cells. Mol Endocrinol. 1998;12:1393–1409.

    Article  PubMed  CAS  Google Scholar 

  198. Borth W. Alpha 2-macroglobulin, a multifunctional binding protein with targeting characteristics. Faseb J. 1992;6:3345–3353.

    PubMed  CAS  Google Scholar 

  199. Perrot-Applanat M, Gualillo 0, Pezet A, Vincent V, Edery M, Kelly PA. Dominant negative and cooperative effects of mutant forms of prolactin receptor. Mol Endocrinol. 1997;11:1020–1032.

    Article  PubMed  CAS  Google Scholar 

  200. Knoepfler PS, Eisenman RN. Sin meets NuRD and other tails of repression. Cell. 1999;99:447–450.

    Article  PubMed  CAS  Google Scholar 

  201. Linzer DI, Fisher SJ. The placenta and the prolactin family of hormones: regulation of the physiology of pregnancy. Mol Endocrinol. 1999;13:837–840.

    Article  PubMed  CAS  Google Scholar 

  202. Wennbo H, Gebre-Medhin M, Gritli-Linde A, Ohlsson C, Isaksson OG, Tornell J. Activation of the prolactin receptor but not the growth hormone receptor is important for induction of mammary tumors in transgenic mice. J Clin Invest. 1997;100:2744–2751.

    Article  PubMed  CAS  Google Scholar 

  203. Goffin V, Touraine P, Pichard C, Bernichtein S, Kelly PA. Should prolactin be reconsidered as a therapeutic target in human breast cancer? Mol Cell Endocrinol. 1999; 151:79–87.

    Article  PubMed  CAS  Google Scholar 

  204. Lange CA, Richer JK, Horwitz KB. Hypothesis: Progesterone primes breast cancer cells for cross-talk with proliferative or antiproliferative signals. Mol Endocrinol. 1999;13:829–836.

    Article  PubMed  CAS  Google Scholar 

  205. Nagasawa H, Miura K, Niki K, Namiki H. Interrelationship between prolactin and progesterone in normal mammary gland growth in SHN virgin mice. Exp Clin Endocrinol. 1985;86:357–360.

    Article  PubMed  CAS  Google Scholar 

  206. Ward AC, Touw I, Yoshimura A. The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood. 2000;95:19–29.

    PubMed  CAS  Google Scholar 

  207. Morales P, Carretero MV, Geronimo H, Copin SG, Gaspar ML, Marcos MA, Martin-Perez J. Influence of prolactin on the differentiation of mouse B-Iymphoid precursors. Cell Growth Differ. 1999;10:583–590.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shemanko, C.S., Groner, B. (2001). Transcription Factors, Cofactors and Target Genes Mediating Prolactin Signals. In: Horseman, N.D. (eds) Prolactin. Endocrine Updates, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1683-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1683-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5676-9

  • Online ISBN: 978-1-4615-1683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics