Skip to main content
Log in

Activation ofraf-1, MEK, and MAP kinase in prolactin responsive mammary cells

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

The polypeptide hormone prolactin (Prl), acting through its cell surface receptors, promotes growth and differentiation in normal and malignant breast cells. We demonstrate herein that two Prl-responsive cell lines, NOG-8 normal mouse mammary epithelial and T47D human breast cancer cells, respond to Prl by rapid and transient activation of a series of kinases.Raf-1 was activated within 2–5 min of Prl treatment. This was followed rapidly by activation of MEK (MAP kinase kinase) and MAP kinase activity in these cells. Increased MAP kinase activity was accompanied by tyrosine phosphorylation of both the 42 kDa and 44 kDa isoforms. The tyrosine kinase inhibitors genestein and tyrphostin blocked the increase in MAP kinase activity as well as Prl induced growth of the T47D cells. These results indicate that the Prl receptor, after binding to Prl in mammary cells, activates theraf-MEK-MAP kinase pathway for signal transduction leading to mitogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Vonderhaar BK: Prolactin: transport, function, and receptors in mammary gland development and differentiation. In: Neville MC, Daniel CW (eds) The Mammary Gland. Plenum Publishing Corporation, New York, NY, 1987, pp 383–438

    Google Scholar 

  2. Vonderhaar BK, Biswas R: Prolactin effects and regulation of its receptors in human mammary tumor cells. In: Medina D, Kidwell W, Hepner G, Anderson E (eds) Cellular and Molecular Biology of Mammary Cancer. Plenum Publishing Corp., New York, NY, 1987, pp 205–219

    Google Scholar 

  3. Bonneterre J, Peyrat JP, Vandewalle B, Beuscart R, Vie MC, Cappelaere P: Prolactin receptors in human breast cancer. Eur J Cancer Clin Oncol 18: 1157–1162, 1982

    PubMed  Google Scholar 

  4. Ginsburg E, Vonderhaar BK: Prolactin synthesis and secretion by human breast cancer cells. Cancer Res 55: 2591–2595, 1995

    PubMed  Google Scholar 

  5. Kelly PA, Djiane J, Postel-Vinay MC, Edery M: The prolactin/growth hormone receptor family. Endocrine Rev 12: 235–251, 1991

    Google Scholar 

  6. Argetsinger LS, Campbell GS, Yang X, Witthuhn BA, Silvennoinen O, Ihle JN, Carter Su C: Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74: 237–244, 1993

    PubMed  Google Scholar 

  7. Silvennoinen O, Witthuhn BA, Quelle FW, Cleveland JL, Taolin Y, Ihle JN: Structure of the murine Jak2 protein-kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci USA 90: 8429–8433, 1993

    PubMed  Google Scholar 

  8. Witthuhn BA, Quelle FW, Silvennoinen O, Tang B, Miura O, Ihle JN: JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74: 227–236, 1993

    PubMed  Google Scholar 

  9. Darnell JE Jr, Kerr IM, Stark GR: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1421, 1994

    PubMed  Google Scholar 

  10. Banerjee R, Ginsburg E, Vonderhaar BK: Characterization of a monoclonal antibody against human prolactin receptors. Int J Cancer 55: 712–721, 1993

    PubMed  Google Scholar 

  11. Banerjee R, Cutler ML, Vonderhaar BK: Repression of lactogen binding to NOG-8 mammary epithelial cells by V-Ras. Mol Cell Differentiation 1: 215–231, 1993

    Google Scholar 

  12. Wakao H, Gouilleux F, Groner B: Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J 13: 2182–2191, 1994

    PubMed  Google Scholar 

  13. Alessandrini A, Crews CM, Erikson RL: Phorbol ester stimulates a protein-tyrosine/threonine kinase that phosphorylates and activates theERK-1 gene product. Proc Natl Acad Sci USA 89: 8200–8204, 1992

    PubMed  Google Scholar 

  14. Crews CM, Erikson RL: Extracellular signals and reversible protein phosphorylation: what to Mek of it all. Cell 74: 215–217, 1993

    PubMed  Google Scholar 

  15. Pelech SL, Sanghera JS: MAP kinases: charting the regulatory pathways. Science 257: 1355–1356, 1992

    PubMed  Google Scholar 

  16. Nishida E, Gotah Y: The MAP kinase cascade is essential for diverse signal transduction pathways. TIBS 18: 128–131, 1993

    PubMed  Google Scholar 

  17. Marquardt B, Frith D, Stabel S: Signalling from TPA to MAP kinase requires protein kinase C, raf and MEK: reconstitution of the signalling pathwayin vitro. Oncogene 9: 3213–3218, 1994

    PubMed  Google Scholar 

  18. Anderson NG, Maller JL, Tonks NK, Sturgill TW: Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 343: 651–653, 1990

    PubMed  Google Scholar 

  19. Cobb MH, Robbins DJ, Boulton TG: ERKs, extracellular signal-regulated MAP-2 kinases. Curr Opin Cell Biol 3: 1025–1032, 1991

    PubMed  Google Scholar 

  20. Banerjee R, Vonderhaar BK: Prolactin induced protein kinase C activity in a mouse mammary epithelial cell line NOG-8. Mol Cell Endocrinol 90: 61–67, 1992

    PubMed  Google Scholar 

  21. Owens RB, Smith HS, Hackett AJ: Epithelial cell culture from glandular tissue of mice. J Natl Cancer Inst 53: 261–266, 1974

    PubMed  Google Scholar 

  22. Biswas R, Vonderhaar BK: Role of serum in prolactin responsiveness of MCF-7 human breast cancer cells in long term tissue culture. Cancer Res 47: 3509–3514, 1987

    PubMed  Google Scholar 

  23. Clevenger CV, Torigoe T, Reed JC: Prolactin induces rapid phosphorylation and activation of prolactin receptor-associated RAF-1 kinase in a T-cell line. J Biol Chem 269: 5559–5565, 1994

    PubMed  Google Scholar 

  24. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970

    PubMed  Google Scholar 

  25. Erikson E, Maller YL:In vivo phosphorylation and activation of ribosomal protein S6 kinases during xenopus oocyte maturation. J Biol Chem 264: 13711–13717, 1989

    PubMed  Google Scholar 

  26. Muslin AJ, MacNicol AM, Williams LT: Raf-1 protein kinase is important for progesterone-induced xenopus oocyte maturation and acts downstream of mos. Mol Cell Biol 13: 4197–4202, 1993

    PubMed  Google Scholar 

  27. Williams NG, Roberts TM, Li P: Both p21ras and pp60v-src are required, but neither alone is sufficient, to activate the raf-1 kinase. Proc Natl Acad Sci USA 89: 2922–2926, 1992

    PubMed  Google Scholar 

  28. Reddy KB, Mangold GL, Tandon AK, Yoneda T, Mundy GR, Zilberstein A, Osborne CK: Inhibition of breast cancer cell growthin vitro by a tyrosine kinase inhibitor. Cancer Res 52: 3636–3641, 1992

    PubMed  Google Scholar 

  29. Kelly PA, Ali S, Rozakis M, Goujon L, Nagano M, Pellegrini I, Gould D, Djiane J, Edery M, Finidori J, Postel-Vinay MC: The growth hormone/prolactin receptor family. Rec Prog Hormone Res 48: 123–164, 1993

    Google Scholar 

  30. Clevenger CV, Chang WP, Ngo W, Pasha TLM, Montone KT, Tomaszewski JE: Expression of prolactin and prolactin receptor in human breast carcinoma. Am J Pathol 146: 695–705, 1995

    PubMed  Google Scholar 

  31. Pages G, Lenormand P, L'Allemain G, Chambard JC, Meloche S, Pouyssegur J: Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA 90: 8319–8323, 1993

    PubMed  Google Scholar 

  32. Troppmair J, Bruder JT, Munoz H, Lloyd PA, Kyriakis J, Banerjee P, Avruch J, Rapp UR: Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation of oncogenes, serum, and 12-tetradecanoylphorbol-13-acetate requires raf and is necesary for transformation. J Biol Chem 269: 7030–7035, 1994

    PubMed  Google Scholar 

  33. Frost JA, Geppert TD, Cobb MH, Fermisco JR: A requirement for extracellular signal-regulated kinase (ERK) function in the activation of AP-1 by Ha-ras, phorbol 12-myristate 13-acetate, and serum. Proc Natl Acad Sci USA 91: 3844–3848, 1994

    PubMed  Google Scholar 

  34. Clevenger CV, Medaglia MV: The protein tyrosine kinase p59fyn is associated with prolactin (PRL) receptor and is activated by PRL stimulation of T-lymphocytes. Mol Endocrinol 8: 674–681, 1994

    PubMed  Google Scholar 

  35. Piccoletti R, Maroni P, Bendinelli P, Bernelli-Zazzera A: Rapid stimulation of mitogen-activated protein kinase of rat liver by prolactin. Biochem J 303: 429–433, 1994

    PubMed  Google Scholar 

  36. Buckley AR, Rao YP, Buckley DJ, Gout PW: Prolactin-induced phosphorylation and nuclear translocation of MAP kinase in Nb2 lymphoma cells. Biochem Biophys Res Commun 204: 1158–1164, 1994

    PubMed  Google Scholar 

  37. Carey G, Liberti JP: Coupling of tyrosine and S6 kinase activities to lactogen-induced mitogenesis. FASEB J 8: A910 (Abstract), 1994

    Google Scholar 

  38. Rui H, Lebrun JJ, Kirken RA, Kelly PA, Farrar WL: JAK2 activation and cell proliferation induced by antibody-mediated prolactin receptor dimerization. Endocrinology 135: 1299–1306, 1994

    PubMed  Google Scholar 

  39. Rui H, Kirken RA, Farrar WL: Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem 269: 5364–5368, 1994

    PubMed  Google Scholar 

  40. Waters MJ, Daniel N, Bignon C, Djiane J: The rabbit mammary gland prolactin receptor is tyrosine phosphorylated in response to prolactinin vivo andin vitro. J Biol Chem 270: 5136–5143, 1995

    PubMed  Google Scholar 

  41. VanderKuur J, Allevato G, Billestrup N, Norstedt G, Carter-Su C: Growth hormone-promoted tyrosyl phosphorylation of SHC proteins and SHC association with Grb2. J Biol Chem 270: 7587–7593, 1995

    PubMed  Google Scholar 

  42. David M, Petricoin EF, Igarashi KI, Feldman GM, Finbloom DS, Larner AC: Prolactin activates the interferonregulated p91 transcription factor and the JAK2 kinase by tyrosine phosphorylation. Proc Natl Acad Sci USA 91: 7174–7178, 1994

    PubMed  Google Scholar 

  43. Sidis Y, Horseman ND: Prolactin induces rapid p95/p70 tyrosine phosphorylation, and protein binding to GAS-like sites in theanxlcp35 andc-fos genes. Endocrinology 134: 1979–1985, 1994

    PubMed  Google Scholar 

  44. Standke GJR, Meier VS, Groner B: Mammary gland factor activated by prolactin in mammary epithelial cells and acute-phase response factor activated by interleukin-6 in liver cells share DNA binding and transactivation potential. Mol Endocrinol 8: 469–477, 1994

    PubMed  Google Scholar 

  45. Moller C, Hansson A, Enberg B, Lobie PE, Norstedt G: Growth hormone (GH) induction of tyrosine phosphorylation and activation of mitogen-activated protein kinases in cells transfected with the rat GH receptor cDNA. J Biol Chem 267: 23403–23408, 1992

    PubMed  Google Scholar 

  46. Sotiropoulos A, Perrot-Applanat M, Dinerstein H, Pallier A, Postel-Vinay MC, Finidori J, Kelly PA: Distinct cytoplasmic regions of the growth hormone receptor are required for activation of JAK2, mitogen-activated protein kinase, and transcription. Endocrinology 135: 1292–1298, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, R., Vonderhaar, B.K. Activation ofraf-1, MEK, and MAP kinase in prolactin responsive mammary cells. Breast Cancer Res Tr 40, 141–149 (1996). https://doi.org/10.1007/BF01806209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01806209

Key words

Navigation