Skip to main content

Soluble Factors Important for Pancreas Development

  • Chapter
  • First Online:
Molecular Basis of Pancreas Development and Function

Part of the book series: Endocrine Updates ((ENDO,volume 11))

Abstract

The pancreas belongs to a family of organs such as the kidney, the lung and the mammary gland, whose development depends on inductive interactions between an epithelium and a mesenchyme. These interactions control proliferation, branching and differentiation of the epithelial cells. Interactions between mesenchymal and epithelial cells are mediated, at least in part, by soluble, diffusible factors. While some of soluble factors that control development of epithelial cells of the lung or the kidney have been identified (1,2), the soluble factors implicated in pancreatic development are less well known. From a theoretical point of view, soluble factors could control different crucial events during pancreatic development: 1) proliferation of immature epithelial cells, 2) their differentiation into endocrine or exocrine cells, and 3) the association of endocrine cells to form islets of Langerhans. These different events are summarized in Figure 1. In the present review, we concentrate on three families of soluble factors that are implicated in pancreatic development. These soluble factors are: ligands for tyrosine kinase receptors such as members of the Fibroblast Growth Factor (FGF) family or members of the Epidermal Growth Factor (EGF) family and members of the Transforming Growth Factor (TGF) superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hogan BL. Morphogenesis. Cell 1999;96:225–33.

    Article  PubMed  CAS  Google Scholar 

  2. Vainio S and Müller U. Inductive tissue interactions, cell signaling, and the control of kidney organogenesis. Cell 1997;90:975–978.

    Article  PubMed  CAS  Google Scholar 

  3. Nishimura T, Utsunomiya Y, Hoshikawa M, Ohuchi H, and Itoh N. Structure and expression of a novel human FGF, FGF-19, expressed in the foetal brain. Biochim Biophys Acta 1999;1444:148–51.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson D, and Williams L. Structural and functional diversity in the FGF receptor mutigene family Adv Cancer Res 1993;60:1–41.

    Google Scholar 

  5. Igarashi M, Finch P, and Aaronson S. Characterization of recombinant human fibroblast growth factor (FGF)-10 reveals functional similarities with keratinocytes growth factor (FGF-7). J Biol Chem 1998;273:13230–13235.

    Article  PubMed  CAS  Google Scholar 

  6. Ornitz D, Xu J, Colvin J, McEwen D, McArthur C, Coulier F, Gao G, and Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996;271:15292–15297.

    Article  PubMed  CAS  Google Scholar 

  7. Finch P, Cunha G, Rubin J, Wong J, and Ron D. Pattern of keratinocyte growth factor and keratinocyte growth factor receptor expression during mouse foetal development suggests a role in mediating morphogenetic mesenchymal-epithelial interactions. Dev Dynam 1995;203:223–240.

    Article  CAS  Google Scholar 

  8. Orr-Urtreger A, Bedford M, Burakowa T, Arman E, Zimmer Y, Yayon A, Givol D, and Lonai P. Developmental localization of the splicing alternatives of fibroblast growth factorreceptor-2 (FGFR2). Dev Biol 1993;158:475–486.

    Article  PubMed  CAS  Google Scholar 

  9. Beer HD, Florence C, Dammeier J, McGuire L, Werner S, and Duan DR. Mouse fibroblast growth factor 10: cDNA cloning, protein characterization, and regulation of mRNA expression. Oncogene 1997;15:2211–8.

    Article  PubMed  CAS  Google Scholar 

  10. Yamasaki M, Miyake A, Tagashiri S, and Itoh N. Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J Biol Chem 1996;71:1518–1521.

    Google Scholar 

  11. Bellusci S, Grindley J, Emoto H, Itoh N, and Hoga BL. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 1997;24:4867–78.

    Google Scholar 

  12. Cardoso WV, Itoh A, Nogawa H, Mason I, and Brody JS. FGF-1 and FGF-7 induce distinct patterns of growth and differentiation in embryonic lung epithelium. Dev Dyn 1997;208:398–405.

    Article  PubMed  CAS  Google Scholar 

  13. Nogawa H, and Ito T. Branching morphogenesis of embryonic mouse lung epithelium in mesenchyme-free culture. Development 1995;121:1015–1022.

    PubMed  CAS  Google Scholar 

  14. Ohmichi H, Koshimizu U, and Matsumoto K. Hepatocyte growth factor acts as a mesenchymederived morphogenic factor during foetal lung development. Development 1998;125:1315–1324.

    PubMed  CAS  Google Scholar 

  15. Peters K, Werner S, Liao X, Wert S, Whittset J, and Williams L. Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. Development 1994;114:233–243.

    Google Scholar 

  16. Celli G, LaRochelle W, Mackern S, Sharp R, and Merlino G. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. Embo J 1998;17:1642–1655.

    Article  PubMed  CAS  Google Scholar 

  17. Min H, Danilenko D, Scully S, Bolon B, Ring B, Tarpley J, DeRose M, and Simonet W. FGF-10 is required for both limb and lung development and exhibits striking functional similaruty to drosophila branchless. Genes & Dev 1998;12:3156–3161.

    Article  CAS  Google Scholar 

  18. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, and Kato S. Fgf10 is essential for limb and lung formation. Nat Genet 1999;21:138–41.

    Article  PubMed  CAS  Google Scholar 

  19. Le Bras S, Miralles F, Basmaciogullari A, Czernichow P, and Scharfmann R. Fibroblast growth factor 2 promotes pancreatic epithelial cell proliferation via functional fibroblast growth factor receptors during embryonic life. Diabetes 1998;47:1236–42.

    Article  PubMed  Google Scholar 

  20. LeBras S, Czernichow P, and Scharfmann R. A search for tyrosine kinase receptors expressed in the rat embryonic pancreas. Diabetologia 1998;41:1474–81.

    Article  PubMed  CAS  Google Scholar 

  21. Stark KL, McMahon JA, and McMahon AP. FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development 1991;113:641–51.

    PubMed  CAS  Google Scholar 

  22. Miralles F, Czemichow P, Ozaki K, Itoh N, and Scharfmann R. Signaling through Fibroblast Growth Factor 2b plays a key role in the development of the exocrine pancreas. Proc Natl Acad Sci USA 1999;96:6267–6272.

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez AM, Buscaglia M, Ong M, and Baird A. Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J Cell Biol 1990;110:753–65.

    Article  PubMed  CAS  Google Scholar 

  24. Gonzalez AM, Hill DJ, Logan A, Maher PA, and Baird A. Distribution of fibroblast growth factor (FGF)-2 and FGF receptor-1 messenger RNA expression and protein presence in the mid-trimester human fetus. Pediatr Res 1996;39:375–85.

    Article  PubMed  CAS  Google Scholar 

  25. Mason I, Fuller-Pace F, Smith R, and Dickson C. FGF-7 (keratinocyte growth factor) expression during mouse development suggests roles in myogenesis, forebrain regionalization and epithelialmesenchymal interactions. Mech Dev 1994;45:15–30.

    Article  PubMed  CAS  Google Scholar 

  26. Nguyen H, Danilenko D, Bucay N, DeRose M, Van G, Thomason A, and Simonet W. Expression of keratinocyte growth factor in embryonc liver of transgenic mice causes changes in epithelial growth and differentiation resulting in polycystic kidneys and other organ malformations. Oncogene 1996;12:2109–2119.

    PubMed  CAS  Google Scholar 

  27. Krakowski ML, Kritzik MR, Jones EM, Krahl T, Lee J, Arnush M, Gu D, and Sarvetnick N. Pancreatic expression of keratinocyte growth factor leads to differentiation of islet hepatocytes and proliferation of duct cells. Am J Pathol 1999;154:683–91.

    Article  PubMed  CAS  Google Scholar 

  28. Ahlgren U, Jonsson J, and Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPFI/PDX1-deficient mice. Development 1996;122:1409–1416.

    PubMed  CAS  Google Scholar 

  29. Gittes G, Galante P, Hanahan D, Rutter W, and Debas H. Lineage specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development 1996;122:439–447.

    PubMed  CAS  Google Scholar 

  30. Miralles F, Serup P, Cluzeaud F, Vandewalle A, Czemichow P, and Scharfmann R. Characterization of beta cells developed in vitro from rat embryonic pancreatic epithelium. Dev Dyn 1999;214:116–26.

    Article  PubMed  CAS  Google Scholar 

  31. Miralles F, Battelino T, Czemichow P, and Scharfmann R. TGF-beta plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metalloproteinase MMP-2. J Cell Biol 1998;143:827–36.

    Article  PubMed  CAS  Google Scholar 

  32. Blanquaert F, Delany AM, and Canalis E. Fibroblast growth factor-2 induces hepatocyte growth factor/scatter factor expression in osteoblasts. Endocrinology 1999;140:1069–74.

    Article  PubMed  CAS  Google Scholar 

  33. Sonnenberg E, Meyer D, Weidner K, and Birchmeier C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 1993;123:223–235.

    Article  PubMed  CAS  Google Scholar 

  34. Ahoy I, and Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Letters 1997;410:83–86.

    Article  Google Scholar 

  35. Riese D, and Stern D. Specificity within the EGF family/ErbB receptor family signaling network. BioEssays 1998;20:41–48.

    Article  PubMed  Google Scholar 

  36. Miettinen PJ, and Heikinheimo K. Transforming growth factor-alpha (TGF-alpha) and insulin gene expression in human foetal pancreas. Development 1992;114:833–40.

    PubMed  CAS  Google Scholar 

  37. Shing Y, Christofori G, Hanahan D, Ono Y, Sasada R, Igarashi K, and Folkman J. Betacellulin: a mitogen from pancreatic ß cell tumors. Science 1993;259:1604–1607.

    Article  PubMed  CAS  Google Scholar 

  38. Seno M, Tada H, Kosaka M, Sasada R, Igarashi K, Shing Y, Folkman J, Ueda M, and Yamada H. Human betacellulin, a member of the EGF family dominantly expressed in pancreas and small intestine, is fully active in a monomeric form. Growth Factors 1996;13:181–91.

    Article  PubMed  CAS  Google Scholar 

  39. Kaneto H, Miyagawa J-I, Kajimoto Y, Yamamoto K, Watada H, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Higashiyama S, and Taniguchi N. Expression of heparin-binding epidermal growth factor-like growth factor during pancreas development. J Biol Chem 1997;46:29137–29143.

    Article  Google Scholar 

  40. Huotari MA, Palgi J, and Otonkoski T. Growth factor-mediated proliferation and differentiation of insulin-producing INS-1 and RINm5F cells: identification of betacellulin as a novel beta-cell mitogen. Endocrinology 1998;139:1494–9.

    Article  PubMed  CAS  Google Scholar 

  41. Mori S, Akiyama T, Yamada Y, Morishita Y, Sugawara I, Toyoshima K, and Yamamoto T. CerbB-2 gene product, a membrane protein commonly expressed on human foetal epithelial cells. Lab Invest 1989;61:93–7.

    PubMed  CAS  Google Scholar 

  42. Erickson S, O’Shea K, Ghaboosi N, Loverro L, Frantz G, Bauer M, Lu L, and Moore M. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2- and heregulin-deficient mice. Development 1997;124:4999–5011.

    PubMed  CAS  Google Scholar 

  43. Miettinen PJ. Epidermal growth factor receptor in mice and men--any applications to clinical practice? Ann Med 1997;29:531–4.

    Article  PubMed  CAS  Google Scholar 

  44. Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, and Merlino GT. TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 1990;61:1137–46.

    Article  PubMed  CAS  Google Scholar 

  45. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, and Lee DC. Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 1990;61:1121–35.

    Article  PubMed  CAS  Google Scholar 

  46. Wang T, Bonner-Weir S, Oates P, Chulack M, and Simon B. Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J Clin Invest 1993;92:1349–1356.

    Article  PubMed  CAS  Google Scholar 

  47. Sundaresan S, Roberts PE, King KL, Sliwkowski MX, and Mather JP. Biological response to ErbB ligands in nontransformed cell lines correlates with a specific pattern of receptor expression. Endocrinology 1998;139:4756–64.

    Article  PubMed  CAS  Google Scholar 

  48. Sanvito F, Herrera P, Huarte J, Nichols A, Montesano R, Orci L, and Vassali J. TGF-ß1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 1994;120:3451–3462.

    PubMed  CAS  Google Scholar 

  49. Mashima H, Ohnishi H, Wakabayashi K, Mine T, Miyagawa J, Hanafusa T, Seno M, Yamada H, and Kojima I. Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J Clin Invest 1996;97:1647–54.

    Article  PubMed  CAS  Google Scholar 

  50. Ishiyama N, Kanzaki M, Seno M, Yamada H, Kobayashi I, and Kojima I. Studies on the betacellulin receptor in pancreatic AR42J cells. Diabetologia 1998;41:623–8.

    Article  PubMed  CAS  Google Scholar 

  51. Offield M, Jetton T, Laborsky P, Ray M, Stein R, Magnuson M, Hogan B, and Wright C. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996;122:983–995.

    PubMed  CAS  Google Scholar 

  52. Ohlsson H, Thor S, and Edlund T. Novel insulin promoter-and enhancer-binding proteins that discriminate between pancreatic alpha and beta cells. Mol Endocrinol 1991;5:897–904.

    Article  PubMed  CAS  Google Scholar 

  53. Kingsley D. The TGF-0 superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes & Dev 1994;8:133–146.

    Article  CAS  Google Scholar 

  54. Hogan B. Bone morphogenic proteins: multifunctional regulators of vertebrate development. Genes & Dev 1996;10:1580–1594.

    Article  CAS  Google Scholar 

  55. Kim S, Hebrok M, and Melton D. Notochord to endoderm signaling is required for pancreas development. Development 1997;124:4243–4252.

    PubMed  CAS  Google Scholar 

  56. Hebrok M, Kim S, and Melton D. Notochord repression of endodermal sonic hedgehog permits pancreas development. Genes & Dev 1998;12:1705–1713.

    Article  CAS  Google Scholar 

  57. Mashima H, Shibata H, Mine T, and Kojima I. Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology 1996;137:3969–76.

    Article  PubMed  CAS  Google Scholar 

  58. Mashima H, Yamada S, Tajima T, Seno M, Yamada H, Takeda J, and Kojima I. Genes expressed during the differentiation of pancreatic AR42J cells into insulin-secreting cells. Diabetes 1999;48:304–309.

    Article  PubMed  CAS  Google Scholar 

  59. Nakamura T, Takio K, Eto Y, Shiba H, Titani K, and Sugino H. Activin-binding protein from rat ovary is follistatin. Science 1990;247:836–838.

    Article  PubMed  CAS  Google Scholar 

  60. Miralles F, Czernichow P, and Scharfmann R. Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 1998;125:1017–24.

    PubMed  CAS  Google Scholar 

  61. Ritvos O, Tuuri T, Eramaa M, Sainio K, Hilden K, Saxén L, and Gilbert S. Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mechanisms of Development 1995;50:229–245.

    Article  PubMed  CAS  Google Scholar 

  62. Yamaoka T, Idehara C, Yano M, Matsushita T, Yamada T, Li S, Moritani M, Hata J, Sugino H, Noji S, and Itakura M. Hypoplasia of pancreatic islets in transgenic mice expressing activin receptor mutants. J Clin Invest 1998;102:294–301.

    Article  PubMed  CAS  Google Scholar 

  63. Shiozaki S, Tajima T, Zhang YQ, Furukawa M, Nakazato Y, and Kojima I. Impaired differentiation of endocrine and exocrine cells of the pancreas in transgenic mouse expressing the truncated type II activin receptor. Biochim Biophys Acta 1999;1450:1–11.

    Article  PubMed  CAS  Google Scholar 

  64. Yasuda H, Inoue K, Shibata H, Takeuchi T, Eto Y, Hasegawa Y, Sekine N, Totsuka Y, Mine T, Ogata E, and Kojima I. Existence of activin-A in A- and D-cells of rat pancreatic islet. Endocrinology 1993;133:624–30.

    Article  PubMed  CAS  Google Scholar 

  65. Yamanaka Y, Friess H, Buchler M, Beger H, Gold L, and Korc M. Synthesis and expression of transforming growth factor ß-1, ß-2, and ß-3 in the endocrine and exocrine pancreas. Diabetes 1993;42:746–756.

    Article  PubMed  CAS  Google Scholar 

  66. Kaartinen V, Voncken J, Shuler W, Warburton C, Bu D, Heisterkamp D, and Groffen J. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nature Genet 1995;11:415–421.

    Article  PubMed  CAS  Google Scholar 

  67. Sanford L, Ormsby I, Groot AG-d, Sariola H, Friedman R, Boivin G, Cardell E, and Doetschmann T. TGFI32 knockout mice have multiple developmental defects that are non-overlapping with other TGFß knockout phenotypes. Development 1997;124:2659–2670.

    PubMed  CAS  Google Scholar 

  68. Lee M-S, Gu D, Feng L, Cunien S, Arnush M, Krahl T, Gurushanthaiah D, Wilson C, Loskutoff D, Fox H, and Sarvetnick N. Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of transforming growth factor-ßl. Am J Pathol 1995;147:42–52.

    PubMed  CAS  Google Scholar 

  69. Sanvito F, Nichols A, Herrer P, Huarte J, Wohlvend A, Vassali, J, and Orci L. TGF-Bl overexpression in murine pancreas induces chronic pancreatitis and, together with TNF-a, triggers insulin-dependent diabetes. Biochem Biophys Res Commun 1995;217:1279–1286.

    Article  PubMed  CAS  Google Scholar 

  70. Böttinger EP, Jakubczak JL, Robets ISD, Mumy M, Hemmati P, Bagnall K, Merlino G, Wakefield LM. Expression of a dominant-negative mutant TGF-ß type II receptor in transgenic mice reveals essentil roles for TGF-f3 in regulation of growth and differentiation in the exocrine pancreas. EMBO 1997;16:2621–2633.

    Article  Google Scholar 

  71. Thorens B, Sarkar H, Kaback H, and Lodish H. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and I3-pancreatic islet cells. Cell 1988;55:281–290.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scharfmann, R., Czernichow, P. (2001). Soluble Factors Important for Pancreas Development. In: Habener, J.F., Hussain, M.A. (eds) Molecular Basis of Pancreas Development and Function. Endocrine Updates, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1669-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1669-9_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5669-1

  • Online ISBN: 978-1-4615-1669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics