Skip to main content

An Historical and Phylogenetic Perspective of Islet-Cell Development

  • Chapter
  • First Online:
Molecular Basis of Pancreas Development and Function

Part of the book series: Endocrine Updates ((ENDO,volume 11))

Abstract

Before the discovery of insulin the diagnosis of diabetes mellitus was equivalent to being sentenced to death. It was thus a miracle that insulin treatment would rescue the lives of diabetics, and Banting and MacLeod were awarded the Nobel Prize in 1923 for their pioneering work in Toronto (1). As time went by, it became apparent that diabetic patients suffer from late complications such as neuropathy, retinopathy, vascular diseases and kidney failure. Such complications are now ascribed to inappropriate fluctuations in blood glucose levels as revealed in recent clinical trials (DCCT &UKPDS) (2-4). Insulin thus provides a treatment of diabetes - not a cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banting FG, Best CH. The internal secretion of the pancreas. J Lab Clin Med 1922;7:251–266.

    CAS  Google Scholar 

  2. The Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–986.

    Article  Google Scholar 

  3. UK Prospective Diabetes Study (UKPDS). VIII. Study design, progress and performance. Diabetologia 1991;34:877–90.

    Article  Google Scholar 

  4. Colwell JA. Intensive insulin therapy in type II diabetes: rationale and collaborative clinical trial results. Diabetes 1996;45 Suppl 3:S87–90.

    PubMed  CAS  Google Scholar 

  5. Lernmark A. Molecular biology of type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1985; 28:195–203.

    Article  PubMed  CAS  Google Scholar 

  6. Sutherland DE, Sibley R, Xu XZ, Michael A, Srikanta AM, Taub F, Najarian J, Goetz FC. Twinto-twin pancreas transplantation: reversal and reenactment of the pathogenesis of type I diabetes. Trans Assoc Amer Physicians 1984;97:80–7.

    CAS  Google Scholar 

  7. Klöppel G, Löhr M, Habich K, Oberholzer M, Heitz PU. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Sury Synth Pathol Res 1985;4:110–25.

    Google Scholar 

  8. Tuomi T, Groop LC, Zimmet PZ, Rowley MJ, Knowles W, Mackay IR. Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulindependent onset of disease. Diabetes 1993;42:358–362.

    Article  Google Scholar 

  9. Turner R, Stratton I, Horton V, Manley S, Zimmet P, Mackay IR, Shattock M, Bottazzo GF, Holman R. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group [published erratum appears in Lancet 1998 Jan 31;351(9099):376]. Lancet 1997;350:1288–93.

    Article  PubMed  CAS  Google Scholar 

  10. Zimmet PZ. Diabetes epidemiology as a tool to trigger diabetes research and care. Diabetologia 1999;42:499–518.

    Article  PubMed  CAS  Google Scholar 

  11. Kendall DM, Robertson RP. Pancreas and islet transplantation in humans. Diabetes Metab 1996;22:157–63.

    PubMed  CAS  Google Scholar 

  12. Sutherland DE, Gruessner AC, Gruessner RW. Pancreas transplantation: a review. Transplant Proc 1998;30:1940–3.

    Article  PubMed  CAS  Google Scholar 

  13. MacLeod JJR. The source of insulin: a study of the effect produced on blood sugar by extracts of the pancreas and principal islets of fishes. J Metab Res 1922;2:149–172.

    CAS  Google Scholar 

  14. Abel JJ. Crystalline insulin. Proc Natl Acad Sci USA 1926;12:132–136.

    Article  PubMed  CAS  Google Scholar 

  15. Ryle AP, Sanger F, Smith LF, Kitai R. The disulfide bonds of insulin. Biochem J 1955;60:541.

    PubMed  CAS  Google Scholar 

  16. Sanger F. Chemistry of insulin. Science 1959; 129:1340–1344.

    Article  PubMed  CAS  Google Scholar 

  17. Blundell TL, Dodson GG, Hodgkin DC, Mercola D. Insulin: the structure in the crystals and its reflection in chemistry and biology. Adv Protein Chem 1972;26:279–402.

    Article  CAS  Google Scholar 

  18. Yalow RS. Application of radioimmunologic methods to problems in insulin antigenicity and hormonal assay. In: Luft R, ed. Insulin. Mölndal: A Lindgren&Söner, AB, 1976:149–196.

    Google Scholar 

  19. Steiner DF, Oyer PE. The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc Natl Acad Sci USA 1967;57:473–480.

    Article  PubMed  CAS  Google Scholar 

  20. Steiner DF, Rouille Y, Gong Q, Martin S, Carroll R, Chan SJ. The role of prohormone convertases in insulin biosynthesis: evidence for inherited defects in their action in man and experimental animals. Diabetes Metab 1996;22:94–104.

    PubMed  CAS  Google Scholar 

  21. Madsen OD, Frank BH, Steiner DF. Human proinsulin-specific antigenic determinants identified by monoclonal antibodies. Diabetes 1984;33:1012–1016.

    Article  PubMed  CAS  Google Scholar 

  22. Orci L, Ravazzola M, Amherdt M, Madsen O, Vassalli J-D, Perrelet A. Direct identification of prohormone conversion site in insulin-secreting cells. Cell 1985;42:671–681.

    Article  PubMed  CAS  Google Scholar 

  23. Ullrich A, Shine J, Chirgwin J, Pictet R, Tischer E, Rutter WJ, Goodman HM. Rat insulin genes: construction of plasmids containing the coding sequences. Science 1977;196:1313–1319.

    Article  PubMed  CAS  Google Scholar 

  24. Cordell B, BellGTischer E, Noto FMD, Ullrich A, Pictet R, Rutter WJ, Goodman HM. Isolation and characterization of a cloned rat insulin gene. Cell 1979;18:533–543.

    Article  PubMed  CAS  Google Scholar 

  25. Lomedico P, Rosenthal N, Efstratiadis A, Gilbert W, Kolondner R, Tizard R. The structure and evolution of the two nonallelic rat preproinsulin genes. Cell 1979;18:545–558.

    Article  PubMed  CAS  Google Scholar 

  26. Bell GI, Pictet RL, Rutter WJ, Cordell B, Tischer E, Goodman HM. Sequence of the human insulin gene. Nature 1980;284:26–32.

    Article  PubMed  CAS  Google Scholar 

  27. Thim L, Hansen MT, Norris K, Hoegh I, Boel E, Forstrom J, Ammerer G, Fiil NP. Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci USA 1986;83:6766–6770.

    Article  PubMed  CAS  Google Scholar 

  28. Walker MD, Edlund T, Boulet AM, Rutter WJ. Cell-specific expression controlled by the 5’ flanking regions of the insulin and chymotrypsin genes. Nature 1983;306:557–561.

    Article  PubMed  CAS  Google Scholar 

  29. Edlund T, Walker MD, Barr PJ, Rutter WJ. Cell-specific expression of the rat I insulin gene: evidence for role of two distinct 5’ flanking elements. Science 1985;230:912–916.

    Article  PubMed  CAS  Google Scholar 

  30. Hanahan D. Heritable formation of pancreatic 13-cell tumors in transgenic mice expression recombinant insulin/simial virus 40 oncogenes. Nature 1985;315:115–122.

    Article  PubMed  CAS  Google Scholar 

  31. Madsen OD, Jensen J, Blume N, Petersen HV, Lund K, arisen C, Andersen FG, Jensen PB, Larsson L-I, Serup P. Pancreatic development and maturation of the islet ß cell. Studies of pluripotent islet cultures. Eur J Biochem 1996;242:435–445.

    Article  PubMed  CAS  Google Scholar 

  32. Ohlsson H, Edlund T. Sequence-specific interactions of nuclear factors with the insulin gene enhancer. Cell 1986;45:35–44.

    Article  PubMed  CAS  Google Scholar 

  33. Ohlsson H, Karlsson O, Edlund T. A beta-cell specific protein binds to the two major regulatory sequences of the insulin gene enhancer. Proc Natl Acad Sci USA 1988;85:4228–4231.

    Article  PubMed  CAS  Google Scholar 

  34. Ohlsson H, Thor S, Edlund T. Novel insulin promoter-and enhancer-binding proteins that discriminate between pancreatic a-and 13-cells. Mol. Endocrinol. 1991;5:897–904.

    CAS  Google Scholar 

  35. Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J 1993;12:4251–4259.

    PubMed  CAS  Google Scholar 

  36. German M, Ashcroft S, Docherty K, et al. The insulin gene promoter: A simplified nomenclature. Diabetes 1995;44:1002–1004.

    PubMed  CAS  Google Scholar 

  37. Miller CP, McGehee RE, Habener JF. IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J 1994; 13:1145–1156.

    PubMed  CAS  Google Scholar 

  38. Leonard J, Peers B, Johnson T, Ferreri K, Lee S, Montminy MR. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol Endocrinol 1993;7:1275–1283.

    Article  PubMed  CAS  Google Scholar 

  39. Wright CVE, Schnegelsberg P, De Robertis EM. X1Hbox 8: a novelXenopushomeoprotein restricted to a narrow band of endoderm. Development 1988;104:787–794.

    Google Scholar 

  40. Gamer LW, Wright CVE. Autonomous endodermal determination inXenopus:Regulation of expression of the pancreatic geneX1Hbox 8 .Dev Biol 1995;171:240–251.

    Article  PubMed  CAS  Google Scholar 

  41. MacFarlane WM, Read ML, Gilligan M, Bujalska I, Docherty K. Glucose modulates the binding activity of the 13-cell transcription factor IUF1 in a phosphorylation-dependent manner. Biochem J 1994;303:625–631.

    PubMed  CAS  Google Scholar 

  42. Marshak S, Totary H, Cerasi E, Melloul D. Purification of the 3-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc Nail Acad Sci USA 1996;93:15057–15062.

    Article  CAS  Google Scholar 

  43. Petersen HV, Serup P, Leonard J, Michelsen BK, Madsen OD. Transcriptional regulation of the human insulin gene is dependent on the homeodomain protein STFI/IPFI acting through the CT boxes. Proc Natl Acad Sci USA 1994;91:10465–10469.

    Article  PubMed  CAS  Google Scholar 

  44. Peers B, Leonard J, Sharma S, Teitelman G, Montminy MR. Insulin expressionin pancreaticislet cells relies in cooperative interactions between the helix-loop-helix factor E47 and the homeobox factor STF-1. Mol Endocrinol 1994;8:1798–1806.

    Article  PubMed  CAS  Google Scholar 

  45. Serup P, Petersen HV, Petersen EE, Edlund H, Leonard J, Petersen JS, Larsson L-I, Madsen OD. The homeodomain protein IPF1/STF1 is expressed in a subset of islet cells and promotes rat insulin 1 gene expression dependent on an intact El helix-loop-helix factor binding site. Biochem J 1995;310:997–1003.

    PubMed  CAS  Google Scholar 

  46. Serup P, Jensen J, Andersen FG, Jorgensen MC, Blume N, Holst JJ, Madsen OD. Induction of insulin and IAPP production in pancreatic islet glucagonoma cells by insulin promoter factor 1. Proc Natl Acad Sci USA 1996;93:9015–9020.

    Article  PubMed  CAS  Google Scholar 

  47. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-Promoter-Factor 1 is required for pancreas development in mice. Nature 1994;371:606–609.

    Article  PubMed  CAS  Google Scholar 

  48. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPFI gene coding sequence. Nat Genet 1997;15:106110.

    Google Scholar 

  49. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. 0-cell-specific inactivation of the mouse Ipfl/Pdx1 gene results in loss of the 13-cell phenotype and maturity onset diabetes. Genes Dev. 1998;12:1763–1768.

    Article  PubMed  CAS  Google Scholar 

  50. Dutta S, Bonner-Weir S, Montminy M, Wright C. Regulatory factor linked to late-onset diabetes? Nature 1998;392.

    Google Scholar 

  51. Ahlgren U, Jonsson J, Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 1996;122:1409–1416.

    PubMed  CAS  Google Scholar 

  52. Offield MF, Jetton TL, Labosky PA, Stein R, Magnuson MA, Hogan BLM, Wright CVE. Pdx-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996;112:983–995.

    Google Scholar 

  53. Pictet RL, Rutter WJ. Development of the embryonic endocrine pancreas. In: Steiner DF, Frenkel N, eds. Handbook of Physiology, section 7, vol. 1, American Physiological Society. Washington DC: Williams and Wilkins,1972:25–66.

    Google Scholar 

  54. Pictet RL, Rail LB, Phelps P, Rutter WJ. The neural crest and the origin of the insulin-producing and other gastrointestinal hormone-producing cells. Science 1976;191:191–192.

    Article  PubMed  CAS  Google Scholar 

  55. Pearse AGE. Islet cell precursors are neurons. Nature 1982;295:96–97.

    Article  PubMed  CAS  Google Scholar 

  56. Percival AC, Slack JMW. Analysis of pancreatic development using a cell lineage label. Exp. Cell Res. 1999; 247:123–132.

    Article  CAS  Google Scholar 

  57. Slack JMW. Developmental biology of the pancreas. Development 1995;121:1569–1580.

    PubMed  CAS  Google Scholar 

  58. Sander M, German MS. The ß cell transcription factors and development of the pancreas. J Mol Med 1997;75:327–340.

    Article  PubMed  CAS  Google Scholar 

  59. Edlund H. Transcribing Pancreas. Diabetes 1998;47:1817–1823.

    Article  PubMed  CAS  Google Scholar 

  60. St-Onge L, Wehr R, Gruss P. Pancreas development and diabetes. Curr Opin Genet Devel 1999;9:295–300.

    Article  CAS  Google Scholar 

  61. Yamaoka T, Itakura M. Development of pancreatic islets (review). Intl J Mol Med 1999;3:247261.

    Google Scholar 

  62. Krapp A, Knofler M, Ledermann B, Burki K, Berney C, Zoerkler N, Hagenbuchle O, Wellauer P. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 1998;12:3752–3763.

    Article  PubMed  CAS  Google Scholar 

  63. Naya F, Huang H-P, Qiu Y, Mutoh H, DeMayo F, Leiter A, Tsai M-J. Diabetes, defective pancreatic morphogenesis and abnormal enteroendocrine differentiation in BETA2/NeuroDdeficient mice. Genes Dev 1997;11:2323–2334.

    Article  PubMed  CAS  Google Scholar 

  64. Larsson L-I, Madsen OD, Serup P, Jonsson J, Edlund H. Pancreatic-duodenal homeobox 1: Role in gastric endocrine patterning. Mech Dev 1996;60:175–184.

    Article  PubMed  CAS  Google Scholar 

  65. Guz Y, Montminy MR, Stein R, Leonard J, Gamer LW, Wright CVE, Teitelman G. Expression of Stf-1, a putative insulin gene transcription factor, in 13-cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 1995;121:1118.

    Google Scholar 

  66. Oster A, Jensen J, Serup P, Galante P, Madsen OD, Larsson L-I. Rat endocrine pancreatic development in relation to two homeobox gene products (Pdx-1 and Nkx 6.1). J Histochem Cytochem 1998;46:707–715.

    Article  PubMed  CAS  Google Scholar 

  67. Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH. Pancreas dorsal lobe aganesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet 1999;23:71–75.

    PubMed  CAS  Google Scholar 

  68. Li H, Arber S, Jessell TM, Edlund H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet 1999;23:67–70.

    PubMed  CAS  Google Scholar 

  69. Ahlgren U, Pfaff SL, Jessel TM, Edlund T, Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 1997;385:257–260.

    Article  PubMed  CAS  Google Scholar 

  70. St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing a-cells in mouse pancreas. Nature 1997;397:406–409.

    Article  Google Scholar 

  71. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing ß cells in the mammalian pancreas. Nature 1997;386:399–402.

    Article  PubMed  CAS  Google Scholar 

  72. Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JLR, German MS. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic 13-cells. Development 1998;125:2213–2221.

    PubMed  CAS  Google Scholar 

  73. Stoffers D, Ferrer J, Clarke W, Habener J. Early-onset type-II diabetes mellitus MODY4) linked to IPF1. Nat Genet 1997;17:138–139.

    Article  PubMed  CAS  Google Scholar 

  74. Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM. Requirement for LIM homeobox gene Isl 1 in motor neuron generation reveals a motor neoron-dependent step in interneuron differentiation. Cell 1996;84:309–320.

    Article  PubMed  CAS  Google Scholar 

  75. Rudnick A, Ling TY, Odagiri H, Rutter WJ, German MS. Pancreatic beta cells express a diverse set of homeobox genes. Proc Natl Acad Sci USA 1994;91:12203–12207.

    Article  PubMed  CAS  Google Scholar 

  76. Jensen J, Serup P, Karlsen C, Funder TF, Madsen OD. mRNA profiling of rat islet tumors reveals Nkx 6.1 as a 13-cell specific homeodomain transcription factor. J Biol Chem 1996;271:18749–18758.

    Article  PubMed  CAS  Google Scholar 

  77. Itkin-Ansari P, Bain G, Beattie GM, Mure C, Hayek A, Levine F. E2A gene products are not required for insulin gene expression. Endocrinology 1996;137:3540–3543.

    Article  PubMed  CAS  Google Scholar 

  78. Krapp A, Knofler M, Frutiger S, Hughes GJ, Hagenbuchle O, Wellauer P. Thep48 DNA-binding subunit of transcription factor PTFI is a new exocrine pancreas-specific basic helix-loop-helix protein. EMBO J 1996;15:4317–4329.

    PubMed  CAS  Google Scholar 

  79. Chen WS, Manova K, Weinstein DC, Duncan SA, Plump AS, Prezioso VR, Bachvarova RF, Darnell JE. Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev 1994;8:2466–2477.

    Article  PubMed  CAS  Google Scholar 

  80. Yamagata K, Furuta H, Oda N, Kaisaki Pi, Menzel S, Cox NJ, Fajans SS, Signorina S, Stoffel N, Bell GI. Mutations in the hepatocyte nuclear factor-4a gene in maturity-onset diabetes of the young (MODY1). Nature 1996;384:458–460.

    Article  PubMed  CAS  Google Scholar 

  81. Yamagata K, Oda N, Kaisaki PJ, et al. Mutations in the hepatocyte nuclear factor-1_ gene in maturiti-onset diabetes of the young (MODY3). Nature 1996;384:455–458.

    Article  PubMed  CAS  Google Scholar 

  82. Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, Babinet C, Yaniv M. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 1996;84:575–585.

    Article  PubMed  CAS  Google Scholar 

  83. Pontoglio M, Sreenan S, Roe M, Pugh W, Ostrega D, doyen A, Pick AJ, Baldwin A, Velho G, Froguel P, Levisetti M. Bonner-Weir S, Bell GI, Yaniv M, Polonsky KS. Defective insulin secretion in hepatocyte nuclear factor la-deficient mice. J Clin Invest 1998;101:2215–2222.

    Article  PubMed  CAS  Google Scholar 

  84. Lee YH, Sauer B, Gonzales FJ. Laron dwarfism and non-insulin-dependent diabetes mellitus in the hnf-1_ knockout mouse. Mol Cell Biol 1998;18:3059–3068.

    PubMed  CAS  Google Scholar 

  85. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O, Kuroki H, Kasahara T, Iwamoto Y, Bell GI. Mutations in hepatocyte nuclear factor-lb gene (TCF2) associated with MODY. Nat Genet 1997;17:384–385.

    Article  PubMed  CAS  Google Scholar 

  86. Falkmer S, El-Salhy M, Titlbach M. Evolution of the neuroendocrine system in vertebrates. A review with particular reference to the phylogeny and postnatal maturation of the islet parenchyma. In: Falkmer S, H’akanson R, Sundler F, eds. Evolution and tumour pathology of the Neuroendocrine System. Amsterdam: Elsevier, 1984:59–87.

    Google Scholar 

  87. Falkmer S. Comparative morphology of pancreatic islet in animals. In: Volk BW, Arquilla ER, eds. The Diabetic Pancreas. New York: Plenum Publishing Corporation, 1985:17–52.

    Chapter  Google Scholar 

  88. Falkmer S. Origin of the parenchymal cells of the endocrine pancreas: Some phylogenetic and ontogenetic aspects. In: Mignon M, Jensen RT, eds. Endocrine tumors of the pancreas. Vol. 23. Basel: S Karger, 1995:2–29.

    Google Scholar 

  89. Kim SK, Melton DA. Pancreas development is promoted by cyclopamine, a Hedgehog signaling inhibitor. Proc Natl Acad Sci USA 1998;95:13036–13041.

    Article  PubMed  CAS  Google Scholar 

  90. Apelqvist tt, Ahlgren U, Edlund H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Cur Biol 1987;7:801–804.

    Article  Google Scholar 

  91. Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development. Development 1997;124:4243–4252.

    PubMed  CAS  Google Scholar 

  92. Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 1998;12:1705–1713.

    Article  PubMed  CAS  Google Scholar 

  93. Brooke NM, Garcia-Fernández J, Holland PWH. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 1998;392:920–922.

    Article  PubMed  CAS  Google Scholar 

  94. Scaglia L, Smith FE, Bonner-Weir S. Apoptosis contributes to the involution of ß cell mass in the postpartum rat pancreas. Endocrinology 1995;136:5461–5468.

    Article  PubMed  CAS  Google Scholar 

  95. Blume N, Skouv J, Larsson L-I, Holst JJ, Madsen OD. Potent inhibitory effects of transplantable rat glucagonomas and insulinomas on the respective endogenous islet cells are associated with pancreatic apoptosis. J. Clin. Invest 1995;96:2227–2235.

    Article  PubMed  CAS  Google Scholar 

  96. Pang K, Mukonoweshuro C, Wong GG. Beta cells arise from glucose transporter type 2 (Glut2)expressing epithelial cells of the developing rat pancreas. Proc Natl Acad Sci USA 1994;91:9559–9563.

    Article  PubMed  CAS  Google Scholar 

  97. Kanaka-Gantenbein C, Tazi A, Czemichow P, Scharfmann R. In vivo presence of the high-affinity NGF receptor TRK-A in the rat pancreas: differential localization during pancreatic development. Endocrinology 1995;136:761–769.

    Article  PubMed  CAS  Google Scholar 

  98. Carlsson C, Lindberg DTK, Galante P, Billestrup N, Michelsen B, Larsson LI, Nielsen JH. Growth-hormone and prolactin stimulate the expression of rat preadipocyte factor-1/delta-like protein in pancreatic-islets. Molecular cloning and expression pattern during development and growth of the endocrine pancreas. Endocrinology 1997;138:3940–3948.

    Article  PubMed  CAS  Google Scholar 

  99. Gittes GK, Galante PE, Hanahan D, Rutter WJ, Debas HT. Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development 1996;122:439–447.

    PubMed  CAS  Google Scholar 

  100. Miralles F, Czernichow P, Scharfmann R. Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 1998;125:1017–1024.

    PubMed  CAS  Google Scholar 

  101. Miralles F, Czernichow P, Ozaki K, Itoh N, Scharfmann R. Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc Natl Acad Sci USA 1999;96:6267–6272.

    Article  PubMed  CAS  Google Scholar 

  102. Argenton F, Zecchin E, Bortolussi M. Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mech Dev 1999;87:217–221.

    Article  PubMed  CAS  Google Scholar 

  103. Milewski WM, Duguay SJ, Chan SJ, Steiner DF. Conservation of PDX-1 structure, function and expression in zebrafish. Endocrinology 1998;139:1440–1449.

    Article  PubMed  CAS  Google Scholar 

  104. Lee YC, Damholt AB, Billestrup N, Kisbye T, Galante P, Michelsen B, Kofod H, Nielsen JH. Developmental expression of proprotein convertase 1/3 in the rat. Mol Cell Endocrinol 1999;In press.

    Google Scholar 

  105. Rouille Y, Kantengwa S, Irminger JC, Halban PA. Role of the prohormone convertase PC3 in the procession of proglucagon to glucagon-like peptide 1. J Biol Chem 1997;272:32810–32816.

    Article  PubMed  CAS  Google Scholar 

  106. Hellerstrom C. The life story of the pancreatic ß cell. Diabetologia 1984;26:393–400.

    Article  PubMed  CAS  Google Scholar 

  107. Bonner-Weir S. Regulation of pancreatic beta-cell mass in vivo. Rec Prog Horm Res 1994;49:91–104.

    PubMed  CAS  Google Scholar 

  108. Vinik A, Pittenger G, Rafaeloff R, Rosenberg L, Duguid W. Determinants of pancreatic islet cell mass: a balance between neogenesis and senescence/apoptosis. Diabetes Rev. 1996;4:235–236.

    Google Scholar 

  109. Finegood DT, Scaglia L, Bonner-weir S. Dynamics of the ß cell mass in the growing rat pancreas. Diabetes 1995;44:249–256.

    Article  PubMed  CAS  Google Scholar 

  110. Brüning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahn CR. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 1997;88:561–572.

    Article  PubMed  Google Scholar 

  111. Withers D, Gutierrez J, Towery H, Burks D, Ren J, Previs S, Zhang Y, Bernal D, Pons S, Shulman G, Bonner-Weir S, White M. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998;391:900–904.

    Article  PubMed  CAS  Google Scholar 

  112. Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF. Irs-2 coordinates Ifg-1 receptor-mediated b-cell development and peripheral insulin signalling. Nat Genet 1999;23:3240.

    Google Scholar 

  113. Hoorens A, Van de Casteele M, Klöppel G, Pipeleers D. Glucose promotes survival of rat pancreatic beta cells by activating synthesis of proteins which suppress a constitutive apoptotic program. J Clin Invest 1996;98:1568–74.

    Article  PubMed  CAS  Google Scholar 

  114. Petrik J, Arany E, Mcdonald TJ, Hill DJ. Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology 1998;139:2994–3004.

    Article  PubMed  CAS  Google Scholar 

  115. Mandrup-Poulsen T. The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 1996;39:1005–1029.

    Article  PubMed  CAS  Google Scholar 

  116. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas - a possible recapitulation of embryonic development. Diabetes 1993;42:1715–1720.

    Article  PubMed  CAS  Google Scholar 

  117. Wang RN, Klöppel G, Bouwens L. Duct-cell to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 1995;38:1404–1411.

    Article  Google Scholar 

  118. Rafaeloff R, Pittenger GL, Barlow SW, Qin XF, Yan B, Rosenberg L, Duguid WP, Vinik AI. Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. J Clin Invest 1997;99:2100–2109.

    Article  PubMed  CAS  Google Scholar 

  119. Wang RN, Bouwens L, Klöppel G. Beta-cell proliferation in normal and streptozotocin-treated newborn rats: site, dynamics and capacity. Diabetologia 1994;37:1088–1096.

    Article  PubMed  CAS  Google Scholar 

  120. Waguri M, Yamamoto K, Miyagawa JI, Tochino Y, Yamamori K, Kajimoto Y, Nakajima H, Watada H, Yoshiuchi I, Itoh N, Imagawa A. Demonstration of two different processes of beta-cell regeneration in a new diabetic mouse model induced by selective perfusion of alloxan. Diabetes 1997;46.

    Google Scholar 

  121. Bouwens L, Wang R-N, Blay ED, Pipeleers DG, Klöppel G. Cytokeratins as markers of ductal cell differentiation and islet neogenesis in the neonatal rat pancreas. Diabetes 1994;43:1279–1283.

    Article  PubMed  CAS  Google Scholar 

  122. Sharma A, Zangen DH, Reitz P, Taneja M, Lissauer ME, Miller CP, Weir GC, Habener JF, Bonner-Weir S. The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes 1999;48:507–513.

    Article  PubMed  CAS  Google Scholar 

  123. Kerr-Conte J, Pattou F, Lecomte-Houcke M, Xia Y, Boilly B, Proye C, Lefebvre J. Ductal cyst formation in collagen-embedded adult human islet preparations. A means to the reproduction of nesidioblastosis in vitro. Diabetes 1996;45:1108–1114.

    Article  PubMed  CAS  Google Scholar 

  124. Beattie GM, Cirulli V, Lopez AD, Hayek A. Ex vivo expansion of human pancreatic endocrine cells. J. Clin. Endocrinol. Metab. 1997;82:1852–1856.

    Article  PubMed  CAS  Google Scholar 

  125. Bouwens L, Pipeleers DG. Extra-insular beta cells associated with ductules are frequent in adult human pancreas. Diabetologia 1998;41:629–633.

    Article  PubMed  CAS  Google Scholar 

  126. Roep BO, Stobbe I, Duinkerken G, vanRood JJ, Lernmark A, Keymeulen B, Pipeleers D, Claas FHJ, deVries RRP. Auto-and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients. Diabetes 1999;48:484–490.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Madsen, O.D., Serup, P., Jensen, J., Petersen, H.V., Heller, R.S. (2001). An Historical and Phylogenetic Perspective of Islet-Cell Development. In: Habener, J.F., Hussain, M.A. (eds) Molecular Basis of Pancreas Development and Function. Endocrine Updates, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1669-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1669-9_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5669-1

  • Online ISBN: 978-1-4615-1669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics