Skip to main content

Isolation of Hyperthermophilic Archaea Previously Detected by Sequencing rDNA Directly from the Environment

  • Chapter
Thermophiles Biodiversity, Ecology, and Evolution

Abstract

Hydrothermal systems are an exciting source of organisms (Blöchl et al., 1995; Stetter, 1992). To date, an unexpectedly large number of unique phenotypes, almost exclusively Archaea, have been isolated from biotypes at a temperature above 85°C, and it seems very likely that the limitations of the conventional enrichment culturing methods have prevented us from assessing the true extent of this number. The first indication of the real variety of Archaea living in hydrothermal ecosystems was given by analyses of 16S rDNA sequences obtained directly without previous cultivation from samples from the Obsidian Pool, a hot spring at Yellowstone National Park. A large number of archaeal sequences could be detected, all of which differed from those of known species (Barns et al., 1994a,b). Knowing the 16S rRNA sequences permits designing specific oligonucleotide probes that can be used in whole cell hybridization experiments (Amann et al., 1990b; Burggraf et al., 1994; DeLong et al., 1989; Stahl and Amann, 1991). This method allows determining the morpho-type of an organism that corresponds to a new sequence, but the examination of its physiological and biochemical properties still requires a growing culture. For more than a century, Koch’s plating technique was the fundamental means to obtain pure cultures of microorganisms (Koch, 1881). However, by this technique, only a small percentage of organisms that form colonies can be obtained in pure culture. Serial dilutions, another isolation technique, works only for organisms that are predominant within environmental samples. A revolutionary new approach is the use of a strongly focused infrared laser beam (“optical tweezers”) to separate single microorganisms (Ashkin and Dziedzic, 1987; Ashkin et al., 1987; Huber et al., 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amann, R., Springer, N., Ludwig, W., Görtz, H.-D., and Schleifer, K.-H. 1991. Identification in situ and phylogeny of uncultured bacterial endosymbiont. Nature 351:161–164.

    Article  PubMed  CAS  Google Scholar 

  • Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., and Stahl, D. A. 1990a. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Env. Microbiol 56:1919–1925.

    CAS  Google Scholar 

  • Amann, R. I., Krumholz, L., and Stahl, D. A. 1990b. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172:762–770.

    PubMed  CAS  Google Scholar 

  • Ashkin, A., and Dziedzic, J. M. 1987. Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520.

    Article  PubMed  CAS  Google Scholar 

  • Ashkin, A., Dziedzic, J. M., and Yamane, T. 1987. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771.

    Article  PubMed  CAS  Google Scholar 

  • Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., and Wolfe, R. S. 1979. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 43:260–296.

    PubMed  CAS  Google Scholar 

  • Balch, W. E., and Wolfe, R. S. 1976. New approach to the cultivation of methanogenic bacteria: 2-Mercaptoethane sulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32:781–791.

    PubMed  CAS  Google Scholar 

  • Barns, S. M., Delwiche, C. F., Palmers, J. D., and Pace, N. R. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sei. USA 93:9188–9193.

    Article  CAS  Google Scholar 

  • Barns, S. M., Fundyga, R. E., Jeffries, M. W, and Pace, N. R. 1994a. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sei. USA 91:1609–1613.

    Article  CAS  Google Scholar 

  • Barns, S. M., Fundyga, R. E., Jeffries, M. W., and Pace, N. R. 1994b. Remarkable archaeal diversity in a Yellowstone National Park hot spring. Abstracts of the 94th General Meeting of the American Society for Microbiology 1994:253.

    Google Scholar 

  • Blöchl, E., Burggraf, S., Fiala, G., Lauerer, G., Huber, G., Huber, R., Rachel, R., Segerer, A., Stetter, K. O., and Völkl, P. 1995. Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World J. Microbiol.Biotech. 11:9–16.

    Article  Google Scholar 

  • Brosius, J., Dull, T. J., Sleeter, D. D., and Noller, H. F. 1981. Gene organization and primary structure of a ribosomal RNA Operon from Escherichia coli. J. Mol. Biol. 148:107–127.

    Article  PubMed  CAS  Google Scholar 

  • Burggraf, S., Heyder, P., and Eis, N. 1997a. A pivotal Archaea group. Nature 385:780.

    Article  PubMed  CAS  Google Scholar 

  • Burggraf, S., Huber, H., and Stetter, K. O. 1997b. Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int. J. Syst. Bacteriol. 47:657–660.

    Article  PubMed  CAS  Google Scholar 

  • Burggraf, S., Mayer, T., Amann, R., Schadhauser, S., Woese, C. R., and Stetter, K. O.1994. Identifying members of the domain archaea with rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 60:3112–3119.

    PubMed  CAS  Google Scholar 

  • DeLong, E. F. 1992. Novel archaea in coastal marine environments. Proc. Natl. Acad. Sei. USA 89:5685–5689.

    Article  CAS  Google Scholar 

  • DeLong, E. F., Wickham, G. S., and Pace, N. R. 1989. Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, E. F., Wu, K. Y., Prezelin, B. B., and Jovine, V. M. 1994. High abundance of Archaea in antarctic marine picoplankton. Nature 371:695–697.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., McCallum, K., and Davis, A. A. 1992. Novel major archaebacterial group from marine plankton. Nature 356:148–149.

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., and Field, K. G. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–62.

    Article  PubMed  CAS  Google Scholar 

  • Huber, R., Burggraf, S., Mayer, T., Barns, S. M., Rossnagel, P., and Stetter, K. O.1995. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376:57–58.

    Article  PubMed  CAS  Google Scholar 

  • Huber, R., Dyba, D., Huber, H., Burggraf, S., and Rachel, R. 1998. Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int. J. Syst. Bacteriol. 48:31–38.

    Article  PubMed  CAS  Google Scholar 

  • Huber, R., Kurr, M., Jannasch, H. W., and Stetter, K. O. 1989. A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature 342:833–834.

    Article  Google Scholar 

  • Huber, R., and Stetter, K. O.1992. The order Thermoproteales. In Balows, A., Trüper, H. G., Dworkin, M., Harder, W, and Schleifer, K.-H. (eds.), The procaryotes (pp. 677–683). New York, Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Hugenholtz, P., Pitulle, C., Hershberger, K. L., and Pace, N. R. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180:366–376.

    PubMed  CAS  Google Scholar 

  • Kane, M. D., Poulsen, L. K., and Stahl, D. A. 1993. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl. Env. Microbiol. 59:682–686.

    CAS  Google Scholar 

  • Koch, R. 1881. Zur Untersuchung von pathogenen Organismen. Mitt. Kaiserl. Gesundheitsamt Berlin 1:1–48.

    Google Scholar 

  • Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J., and Woese, C. R. 1996. The Ribosomal Database Project (RDP). Nucleic Acids Res. 24:82–85.

    Article  PubMed  CAS  Google Scholar 

  • Palleroni, N. J. 1994. Some reflections on bacterial diversity. ASM News 60:537–540.

    Google Scholar 

  • Stahl, D. A., and Amann, R. L. 1991. Development and application of nucleic acid probes in bacterial systematics. In Stackebrandt, E., and Goodfellow, M. (eds.) Sequencing and hybridization techniques in bacterial systematics (pp. 205–248). Chichester, England: Wiley.

    Google Scholar 

  • Stetter, K. O. 1982. Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300:258–260.

    Article  Google Scholar 

  • Stetter, K. O. 1992. Life at the upper temperature border. In Colloque Interdisplinaire du Comité National de la Recherche Scientifique, Frontiers of Life. Gif-sur-Yvette, France: Editions Fronières.

    Google Scholar 

  • Stetter, K. O., Lauerer, G., Thomm, M., and Neuner, A. 1987. Isolation of extremely thermophilic sulfate reducers: Evidence for a novel branch of archaebacteria. Science 236:822–824.

    Article  PubMed  CAS  Google Scholar 

  • Stetter, K. O., Thomm, M., Winter, J., Wildgruber, G., Huber, H., Zillig, W., Janekovic, D., König, H., Palm, P., and Wunderl, S. 1981. Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl. Bakt. Hyg., I. Abt. Orig. C 2:166–178.

    CAS  Google Scholar 

  • Ward, D. M., Weiler, R., and Bateson, M. M. 1990.16S rRNA sequences reveal numerous uncultured inhabitants in a natural community. Nature 345:63–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burggraf, S., Huber, R., Mayer, T., Rossnagel, P., Rachel, R. (2001). Isolation of Hyperthermophilic Archaea Previously Detected by Sequencing rDNA Directly from the Environment. In: Reysenbach, AL., Voytek, M., Mancinelli, R. (eds) Thermophiles Biodiversity, Ecology, and Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1197-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1197-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5436-9

  • Online ISBN: 978-1-4615-1197-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics